AL
Anuja Lipsa
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Adenoviral Delivery of the CIITA Transgene Induces T-Cell-Mediated Killing in Glioblastoma Organoids

Ilaria Salvato et al.Jan 26, 2024
+11
A
E
I
ABSTRACT The immunosuppressive nature of the tumor microenvironment poses a significant challenge to effective immunotherapies against glioblastoma (GB). Boosting the immune response is critical for a successful therapy. Here, we adopted a cancer gene therapy approach to induce T-cell mediated killing of the tumor through increased activation of the immune system. Patient-based 3D GB models were infected with a replication-deficient adenovirus (AdV) armed with the Class II Major Histocompatibility Complex (MHC-II) Transactivator CIITA gene (Ad-CIITA). Successful induction of surface MHC-II was achieved in infected GB cell lines and primary human GB organoids. Infection with an AdV carrying a mutant form of CIITA with a single amino acid substitution resulted in cytoplasmic accumulation of CIITA without subsequent MHC-II expression. Co-culture of infected tumor cells with either PBMCs or isolated T-cells led to dramatic breakdown of GB organoids. Intriguingly, both wild-type and mutant Ad-CIITA but not unarmed AdV, triggered immune-mediated tumor cell death in the co-culture system, suggesting an at least partially MHC-II-independent process. We further show that the observed cancer cell killing requires the presence of either CD8 + or CD4 + T-cells and the direct contact between GB and immune cells. We did not however detect evidence of activation of canonical T-cell mediated cell death pathways. While the precise mechanism remains to be determined, these findings highlight the potential of AdV-mediated CIITA delivery to enhance T-cell-mediated immunity against GB.
0
Citation1
0
Save
22

Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts

Yahaya Yabo et al.Mar 6, 2023
+23
P
G
Y
ABSTRACT Background A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. Methods Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA-sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. Results We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. Conclusion Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
22
Citation1
0
Save
1

CDK12/CDK13 inhibition disrupts a transcriptional program critical for glioblastoma survival

Silje Lier et al.Jul 17, 2023
+19
A
S
S
Abstract Glioblastoma is the most prevalent and aggressive malignant tumor of the central nervous system. With a median overall survival of only one year, glioblastoma patients have a particularly poor prognosis, highlighting a clear need for novel therapeutic strategies to target this disease. Transcriptional cyclin-dependent kinases (tCDK), which phosphorylate key residues of RNA polymerase II (RNAPII) c-terminal domain (CTD), play a major role in sustaining aberrant transcriptional programs that are key to development and maintenance of cancer cells. Here, we show that either pharmacological inhibition or genetic ablation of the tCDKs, CDK12 and CDK13, markedly reduces both the proliferation and migratory capacity of glioma cells and patient-derived organoids. Using a xenograft mouse model, we demonstrate that CDK12/13 inhibition not only reduces glioma growth in vivo . Mechanistically, inhibition of CDK12/CDK13 leads to a genome-wide abrogation of RNAPII CTD phosphorylation, which in turn disrupts transcription and cell cycle progression in glioma cells. In summary, the results provide proof-of-concept for the potential of CDK12 and CDK13 as therapeutic targets for glioblastoma. Significance statement Glioblastoma is a common, aggressive, and invasive type of brain tumor that is usually fatal. The standard treatment for glioblastoma patients is surgical resection, radiotherapy, and chemotherapy with DNA-alkylating agents, and unfortunately current treatments only extend overall survival by a few months. It is therefore critical to identify and target additional biological processes in this disease. Here, we reveal that targeting a specific transcriptional addiction for glioma cells by inhibition of CDK12/CDK13 disrupts glioma-specific transcription and cell cycle progression and has potential to provide a new therapeutic strategy for glioblastoma.