KG
Karl Gatterdam
Author with expertise in The p53 Signaling Network in Cancer Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
351
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
53

The structure of HiSiaQM defines the architecture of tripartite ATP-independent periplasmic (TRAP) transporters

Μ. Peter et al.Dec 3, 2021
Summary Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in bacteria and archaea and provide important uptake routes for many metabolites 1–3 . They consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains) that form a functional unit 4 . While the structures of the P-domains are well-known, an experimental structure of any QM-domain has been elusive. HiSiaPQM is a TRAP transporter for the monocarboxylate sialic acid, which plays a key role in the virulence of pathogenic bacteria 5 . Here, we present the first cryo-electron microscopy structure of the membrane domains of HiSiaPQM reconstituted in lipid nanodiscs. The reconstruction reveals that TRAP transporters consist of 15 transmembrane helices and are structurally related to elevator-type transporters, such as GltPh and VcINDY 6, 7 . Whereas the latter proteins function as multimers, the idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. Structural and mutational analyses together with an AlphaFold 8 model of the tripartite (PQM) complex reveal the structural and conformational coupling of the substrate-binding protein to the transporter domains. Furthermore, we characterize high-affinity VHHs that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake in vivo . Thereby, they also confirm the orientation of the protein in the membrane. Our study provides the first structure of any binding-protein dependent secondary transporter and provides starting points for the development of specific inhibitors.
53
Citation2
0
Save
4

Dynamic in situ confinement triggers ligand-free neuropeptide receptor signaling

M. Sánchez et al.Dec 17, 2021
Abstract Membrane receptors are central to cell-cell communication. Receptor clustering at the plasma membrane modulates physiological responses, and mesoscale receptor organization is critical for downstream signaling. Spatially restricted cluster formation of the neuropeptide Y 2 hormone receptor (Y 2 R) was observed in vivo ; however, the relevance of this confinement is not fully understood. Here, we controlled Y 2 R clustering in situ by a chelator nanotool. Due to the multivalent interaction, we observed a dynamic exchange in the microscale confined regions. Fast Y 2 R enrichment in clustered areas triggered a ligand-independent downstream signaling determined by an increase in cytosolic calcium, cell spreading, and migration. We revealed that the cell response to ligand-induced activation was amplified when cells were pre-clustered by the nanotool. Ligand-independent signaling by clustering differed from ligand-induced activation in the binding of arrestin-3 as downstream effector, which was recruited to the confined regions only in the presence of the ligand. This approach enables in situ clustering of membrane receptors and raises the possibility to explore different modalities of receptor activation. Abstract Figure
4
Citation1
0
Save
0

Structural basis of Cdk7 activation by dual T-loop phosphorylation

Robert Düster et al.Aug 3, 2024
Abstract Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.
0
Citation1
0
Save
0

Structural basis of Cdk7 activation by dual T-loop phosphorylation

Robert Düster et al.Feb 14, 2024
Abstract Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates—the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.
3

A conserved isoleucine in the binding pocket of RIG-I controls immune tolerance to mitochondrial RNA

Ann Regt et al.Aug 4, 2022
SUMMARY RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5’triphosphorylated and 5’base-paired RNA(dsRNA). Here, we found that, while 5’unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5’-monophosphate(5’p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5’p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5’p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with a long, highly structured, polyA-bearing, non-coding mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5’p-RNA recognition is crucial to preventing mtRNA-triggered RIG-I-mediated autoinflammation.