HE
Hana El‐Samad
Author with expertise in Stochasticity in Gene Regulatory Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(69% Open Access)
Cited by:
2,154
h-index:
39
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defining Network Topologies that Can Achieve Biochemical Adaptation

Wenzhe Ma et al.Aug 1, 2009
+2
H
A
W
Many signaling systems show adaptation-the ability to reset themselves after responding to a stimulus. We computationally searched all possible three-node enzyme network topologies to identify those that could perform adaptation. Only two major core topologies emerge as robust solutions: a negative feedback loop with a buffering node and an incoherent feedforward loop with a proportioner node. Minimal circuits containing these topologies are, within proper regions of parameter space, sufficient to achieve adaptation. More complex circuits that robustly perform adaptation all contain at least one of these topologies at their core. This analysis yields a design table highlighting a finite set of adaptive circuits. Despite the diversity of possible biochemical networks, it may be common to find that only a finite set of core topologies can execute a particular function. These design rules provide a framework for functionally classifying complex natural networks and a manual for engineering networks. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
0
Citation873
0
Save
0

Conformational biosensors reveal GPCR signalling from endosomes

Roshanak Irannejad et al.Mar 1, 2013
+8
J
J
R
A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.
0

BiP Binding to the ER-Stress Sensor Ire1 Tunes the Homeostatic Behavior of the Unfolded Protein Response

David Pincus et al.Jul 6, 2010
+4
T
M
D
The unfolded protein response (UPR) is an intracellular signaling pathway that counteracts variable stresses that impair protein folding in the endoplasmic reticulum (ER). As such, the UPR is thought to be a homeostat that finely tunes ER protein folding capacity and ER abundance according to need. The mechanism by which the ER stress sensor Ire1 is activated by unfolded proteins and the role that the ER chaperone protein BiP plays in Ire1 regulation have remained unclear. Here we show that the UPR matches its output to the magnitude of the stress by regulating the duration of Ire1 signaling. BiP binding to Ire1 serves to desensitize Ire1 to low levels of stress and promotes its deactivation when favorable folding conditions are restored to the ER. We propose that, mechanistically, BiP achieves these functions by sequestering inactive Ire1 molecules, thereby providing a barrier to oligomerization and activation, and a stabilizing interaction that facilitates de-oligomerization and deactivation. Thus BiP binding to or release from Ire1 is not instrumental for switching the UPR on and off as previously posed. By contrast, BiP provides a buffer for inactive Ire1 molecules that ensures an appropriate response to restore protein folding homeostasis to the ER by modulating the sensitivity and dynamics of Ire1 activity.
0
Citation399
0
Save
6

Synthetic cytokine circuits that drive T cells into immune-excluded tumors

Greg Allen et al.Dec 16, 2022
+13
N
N
G
Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.
6
Citation75
3
Save
1

Sentinel cells enable genetic detection of SARS-CoV-2 Spike protein

Zara Weinberg et al.Apr 20, 2021
+14
M
C
Z
The COVID-19 pandemic has demonstrated the need for exploring different diagnostic and therapeutic modalities to tackle future viral threats. In this vein, we propose the idea of sentinel cells, cellular biosensors capable of detecting viral antigens and responding to them with customizable responses. Using SARS-CoV-2 as a test case, we developed a live cell sensor (SARSNotch) using a de novo-designed protein binder against the SARS-CoV-2 Spike protein. SARSNotch is capable of driving custom genetically-encoded payloads in immortalized cell lines or in primary T lymphocytes in response to purified SARS-CoV-2 Spike or in the presence of Spike-expressing cells. Furthermore, SARSNotch is functional in a cellular system used in directed evolution platforms for development of better binders or therapeutics. In keeping with the rapid dissemination of scientific knowledge that has characterized the incredible scientific response to the ongoing pandemic, we extend an open invitation for others to make use of and improve SARSNotch sentinel cells in the hopes of unlocking the potential of the next generation of smart antiviral therapeutics.
0

Design and analysis of a Proportional-Integral-Derivative controller with biological molecules

Michael Chevalier et al.Apr 18, 2018
H
A
M
M
Summary The ability of cells to regulate their function through feedback control is a fundamental underpinning of life. The capability to engineer de novo feedback control with biological molecules is ushering in an era of robust functionality for many applications in biotechnology and medicine. To fulfill their potential, feedback control strategies implemented with biological molecules need to be generalizable, modular and operationally predictable. Proportional-Integral-Derivative (PID) control fulfills this role for technological systems and is a commonly used strategy in engineering. Integral feedback control allows a system to return to an invariant steady-state value after step disturbances, hence enabling its robust operation. Proportional and derivative feedback control used with integral control help sculpt the dynamics of the return to steady-state following perturbation. Recently, a biomolecular implementation of integral control was proposed based on an antithetic motif in which two molecules interact stoichiometrically to annihilate each other’s function. In this work, we report how proportional and derivative implementations can be layered on top of this integral architecture to achieve a biochemical PID control design. We illustrate through computational and analytical treatments that the addition of proportional and derivative control improves performance, and discuss practical biomolecular implementations of these control strategies.
0

Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics

Susan Chen et al.Feb 13, 2019
+5
M
L
S
Abstract The dynamic translocation of transcription factors (TFs) in and out of the nucleus is thought to encode information, such as the identity of a stimulus. A corollary is the idea that gene promoters can decode different dynamic TF translocation patterns. Testing this TF encoding/promoter decoding hypothesis requires tools that allow direct control of TF dynamics without the pleiotropic effects associated with general perturbations. In this work, we present CLASP (Controllable Light Activated Shuttling and Plasma membrane sequestration), a tool that enables precise, modular, and reversible control of TF localization using a combination of two optimized LOV2 optogenetic constructs. The first sequesters the cargo in the dark at the plasma membrane and releases it upon exposure to blue light, while light exposure of the second reveals a nuclear localization sequence that shuttles the released cargo to the nucleus. CLASP achieves minute-level resolution, reversible translocation of many TF cargos, large dynamic range, and tunable target gene expression. Using CLASP, we investigate the relationship between Crz1, a naturally pulsatile TF, and its cognate promoters. We establish that some Crz1 target genes respond more efficiently to pulsatile TF inputs than to continuous inputs, while others exhibit the opposite behavior. We show using computational modeling that efficient gene expression in response to short pulsing requires fast promoter activation and slow inactivation and that the opposite phenotype can ensue from a multi-stage promoter activation, where a transition in the first stage is thresholded. These data directly demonstrate differential interpretation of TF pulsing dynamics by different genes, and provide plausible models that can achieve these phenotypes.
0
Citation8
0
Save
22

Accurate prediction of genetic circuit behavior requires multidimensional characterization of parts

Galen Dods et al.May 31, 2020
A
H
M
G
Abstract Mathematical models can aid the design of genetic circuits, but may yield inaccurate results if individual parts are not modeled at the appropriate resolution. To illustrate the importance of this concept, we study transcriptional cascades consisting of two inducible synthetic transcription factors connected in series. Despite the simplicity of this design, we find that accurate prediction of circuit behavior requires mapping the dose responses of each circuit component along the dimensions of both its expression level and its inducer concentration. With such multidimensional characterizations, we were able to computationally explore the behavior of 16 different circuit designs. We experimentally verified a subset of these predictions and found substantial agreement. This method of biological part characterization enables the use of models to identify (un)desired circuit behaviors prior to experimental implementation, thus shortening the design-build-test cycle for more complex circuits.
0

Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs

Kale Kundert et al.May 15, 2018
+9
K
J
K
Abstract The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-molecule control of CRISPR-Cas9 function through insertion of RNA aptamers into the sgRNA. We show that CRISPR-Cas9-based gene repression (CRISPRi) can be either activated or deactivated in a dose-dependent fashion over a >10-fold dynamic range in response to two different small-molecule ligands. Since our system acts directly on each target-specific sgRNA, it enables new applications that require differential and opposing temporal control of multiple genes.
0
Citation3
0
Save
18

Optogenetic control of RelA reveals effect of transcription factor dynamics on downstream gene expression

Lindsey Osimiri et al.Aug 5, 2022
+4
S
A
L
Abstract Many transcription factors (TFs) translocate to the nucleus with varied dynamic patterns in response to different inputs. A notable example of such behavior is RelA, a subunit of NF-κB, which translocates to the nucleus with either pulsed or sustained dynamics, depending on the stimulus. Our understanding of how these dynamics are interpreted by downstream genes has remained incomplete, partly because ubiquitously used environmental inputs activate other transcriptional regulators in addition to RelA. Here, we use an optogenetic tool, CLASP (controllable light-activated shuttling and plasma membrane sequestration), to control RelA spatiotemporal dynamics in mouse fibroblasts and quantify their effect on downstream genes using RNA-seq. Using RelA-CLASP, we show for the first time that nuclear translocation of RelA, without post-translational modifications or activation of other transcriptional regulators, is sufficient to activate downstream genes. Furthermore, we find that TNFα, a common endogenous input, regulates many genes independently of RelA, and that this gene regulation is different from that induced by RelA-CLASP. Genes responsive to RelA-CLASP show a wide range of dynamics in response to a constant RelA input. We use a simple promoter model to recapitulate these diverse dynamic responses, as well as data collected in response to a pulsed RelA-CLASP input, and extract features of many RelA-responsive promoters. We also pinpoint many genes for which more complex models, involving feedback or multi-step promoters, may be needed to explain their response to constant and pulsed TF inputs. This study introduces a new robust tool for studying mammalian transcriptional regulation and demonstrates the power of optogenetic tools in dissecting the quantitative features of important cellular pathways.
18
Citation3
0
Save
Load More