AK
Anna Khusnutdinova
Author with expertise in Metabolic Engineering and Synthetic Biology
University of Toronto, Bangor University, Institute of Basic Biological Problems
+ 3 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
164
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae

Kaushik Raj et al.Nov 13, 2023
+3
K
S
K
Adipic acid is an important industrial chemical used in the synthesis of nylon-6,6. The commercial synthesis of adipic acid uses petroleum-derived benzene and releases significant quantities of greenhouse gases. Biocatalytic production of adipic acid from renewable feedstocks could potentially reduce the environmental damage and eliminate the need for fossil fuel precursors. Recently, we have demonstrated the first enzymatic hydrogenation of muconic acid to adipic acid using microbial enoate reductases (ERs) - complex iron-sulfur and flavin containing enzymes. In this work, we successfully expressed the Bacillus coagulans ER in a Saccharomyces cerevisiae strain producing muconic acid and developed a three-stage fermentation process enabling the synthesis of adipic acid from glucose. The ability to express active ERs and significant acid tolerance of S. cerevisiae highlight the applicability of the developed yeast strain for the biocatalytic production of adipic acid from renewable feedstocks.
1
Citation76
0
Save
1

Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids

Anna Khusnutdinova et al.Nov 13, 2023
+7
A
R
A
Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo‐, hydroxy‐, amino‐, or second carboxyl groups with several enzymes showing activity toward 4‐hydroxybutanoic (4‐HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo‐keto reductase catalyzes a high conversion (50–76%) of 4‐HB to 1,4‐butanediol (1,4‐BDO) and adipic acid to 1,6‐hexanediol (1,6‐HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4‐HB to 1,4‐BDO with 50–95% conversion, whereas adipic acid is reduced to a mixture of 6‐hydroxyhexanoic acid (6‐HHA) and 1,6‐HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis.
1
Citation75
0
Save
1

A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution

Yilan Liu et al.Nov 13, 2023
+8
A
J
Y
Abstract Background Aldehyde decarbonylases (ADs), which convert acyl aldehydes into alkanes, supply promising solution for producing alkanes from renewable feedstock. However the instability of ADs impedes their further application. Therefore, the current study aimed to investigate the degradation mechanism of ADs and engineer it towards high stability. Results Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus using error-prone PCR-based directed evolution system. Bioinformatic analysis revealed that this C-terminal degron is common in bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli , thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo. Conclusion This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes.
1
Paper
Citation8
0
Save
0

Flux balance analysis predicts NADP phosphatase and NADH kinase are critical to balancing redox during xylose fermentation inScheffersomyces stipitis

Kevin Correia et al.May 7, 2020
+4
P
A
K
ABSTRACT Xylose is the second most abundant sugar in lignocellulose and can be used as a feedstock for next-generation biofuels by industry. Saccharomyces cerevisiae , one of the main workhorses in biotechnology, is unable to metabolize xylose natively but has been engineered to ferment xylose to ethanol with the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Scheffersoymces stipitis . In the scientific literature, the yield and volumetric productivity of xylose fermentation to ethanol in engineered S. cerevisiae still lags S. stipitis , despite expressing of the same XR-XDH genes. These contrasting phenotypes can be due to differences in S. cerevisiae’s redox metabolism that hinders xylose fermentation, differences in S. stipitis’ redox metabolism that promotes xylose fermentation, or both. To help elucidate how S. stipitis ferments xylose, we used flux balance analysis to test various redox balancing mechanisms, reviewed published omics datasets, and studied the phylogeny of key genes in xylose fermentation. In vivo and in silico xylose fermentation cannot be reconciled without NADP phosphatase (NADPase) and NADH kinase. We identified eight candidate genes for NADPase. PHO3.2 was the sole candidate showing evidence of expression during xylose fermentation. Pho3.2p and Pho3p, a recent paralog, were purified and characterized for their substrate preferences. Only Pho3.2p was found to have NADPase activity. Both NADPase and NAD(P)H-dependent XR emerged from recent duplications in a common ancestor of Scheffersoymces and Spathaspora to enable efficient xylose fermentation to ethanol. This study demonstrates the advantages of using metabolic simulations, omics data, bioinformatics, and enzymology to reverse engineer metabolism.
0
Paper
Citation2
0
Save
0

A random mutagenesis screen enriched for missense mutations in bacterial effector proteins

Malene Urbanus et al.Sep 12, 2024
+8
A
T
M
Abstract To remodel their hosts and escape immune defenses, many pathogens rely on large arsenals of proteins (effectors) that are delivered to the host cell using dedicated translocation machinery. Effectors hold significant insight into the biology of both the pathogens that encode them and the host pathways that they manipulate. One of the most powerful systems biology tools for studying effectors is the model organism, Saccharomyces cerevisiae. For many pathogens, the heterologous expression of effectors in yeast is growth inhibitory at a frequency much higher than housekeeping genes, an observation ascribed to targeting conserved eukaryotic proteins. Abrogation of yeast growth inhibition has been used to identify bacterial suppressors of effector activity, host targets, and functional residues and domains within effector proteins. We present here a yeast-based method for enriching for informative, in-frame, missense mutations in a pool of random effector mutants. We benchmark this approach against three effectors from Legionella pneumophila, an intracellular bacterial pathogen that injects a staggering &gt;330 effectors into the host cell. For each protein, we show how in silico protein modeling (AlphaFold2) and missense-directed mutagenesis can be combined to reveal important structural features within effectors. We identify known active site residues within the metalloprotease RavK, the putative active site in SdbB, and previously unidentified functional motifs within the C-terminal domain of SdbA. We show that this domain has structural similarity with glycosyltransferases and exhibits in vitro activity consistent with this predicted function.
0
Citation1
0
Save
4

Thermophilic carboxylesterases from hydrothermal vents of the volcanic island of Ischia active on synthetic and biobased polymers and mycotoxins

Marco Distaso et al.Oct 24, 2023
+14
R
T
M
ABSTRACT Hydrothermal vents have a widespread geographical distribution and are of high interest for investigating microbial communities and robust enzymes for various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes ( Geobacillus and Brevibacillus spp.), Proteobacteria and Bacteroidota . High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate (PHB) and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus spp., and to some extent, Fontimonas and Schleiferia spp. The screening at 37-70ºC of metagenomic fosmid library from above enrichment cultures resulted in identification and successful production in Escherichia coli of three hydrolases (IS10, IS11 and IS12), all derived from yet uncultured Chloroflexota and showing low sequence identity (33-56%) to characterized enzymes. Enzymes exhibited maximal esterase activity at temperatures 70-90ºC, with IS11 showing the highest thermostability (90% activity after 20 min incubation at 80ºC). IS10 and IS12 were highly substrate-promiscuous and hydrolysed all 51 monoester substrates tested. Enzymes were active with polyesters (PLA and polyethylene terephthalate model substrate, 3PET) and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/β hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in the hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of the N-terminal β-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 includes catalytic residues Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain encloses the catalytic cleft like a lid contributing to substrate binding. Thus, this study has identified novel thermotolerant carboxylesterases with a broad substrate range including polyesters and mycotoxins for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications including recycling of synthetic and biobased polyesters increasingly used in textiles, fibres, coatings and adhesives. Here, we have discovered three novel thermotolerant carboxylesterases (IS10, IS11 and IS12) from high-temperature enrichment cultures from the Ischia hydrothermal vents incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest “effective volumes” among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous compared to IS10 and IS12, IS11 had a higher thermostability with high temperature optimum (80-90 ºC) for activity, hydrolysed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity in these enzymes makes them attractive candidates for further optimisation and potential application in plastics recycling.
0

A random mutagenesis screen enriched for missense mutations in bacterial effector proteins

Malene Urbanus et al.Mar 17, 2024
+8
A
T
M
Abstract To remodel their hosts and escape immune defenses, many pathogens rely on large arsenals of proteins (effectors) that are delivered to the host cell using dedicated translocation machinery. Effectors hold significant insight into the biology of both the pathogens that encode for them and the host pathways that they manipulate. One of the most powerful systems biology tools for studying effectors is the model organism, Saccharomyces cerevisiae . For many pathogens, the heterologous expression of effectors in yeast is growth inhibitory at a frequency much higher than housekeeping genes, an observation ascribed to targeting conserved eukaryotic proteins. Abrogation of yeast growth inhibition has been used to identify bacterial suppressors of effector activity, host targets, and functional residues and domains within effector proteins. We present here a yeast-based method for enriching for informative, in-frame, missense mutations in a pool of random effector mutants. We benchmark this approach against three effectors from Legionella pneumophila , an intracellular bacterial pathogen that injects a staggering >330 effectors into the host cell. For each protein, we show how in silico protein modeling (AlphaFold2) and missense- directed mutagenesis can be combined to reveal important structural features within effectors. We identify known active site residues within the metalloprotease RavK, highly conserved residues in SdbB, and previously unidentified functional motifs within the C-terminal domain of SdbA. We show that this domain has structural similarity with glycosyltransferases and exhibits in vitro activity consistent with this predicted function.
2

A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution

Yilan Liu et al.Nov 13, 2023
+8
A
j
Y
Abstract Background: Aldehyde decarbonylases (ADs), which convert acyl aldehydes into alkanes, supply promising solution for producing alkanes from renewable feedstock. However the instability of ADs impedes their further application. Therefore, the current study aimed to investigate the degradation mechanism of ADs and engineer it towards high stability. Results: Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus using error-prone PCR based directed evolution system. Bioinformatic analysis revealed that this C-terminal degron is common in bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli , thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo . Conclusion: This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes.
1

A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution

Yilan Liu et al.Nov 13, 2023
+8
A
j
Y
Abstract Background: Aldehyde decarbonylase (AD), which converts acyl aldehydes into alkanes, supplies promising solution for producing alkanes from renewable feedstock. However the instability of AD impeded its further application. Therefore, the current study aimed to investigate the degradation mechanism of AD and engineer it towards high stability. Results: Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus via error-prone PCR based directed evolution system. Bioinformatic analysis revealed this C-terminal degron is common in the family of bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli , thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo . Conclusions: This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes.
1

One-pot chemo-enzymatic synthesis and one-step recovery of homogeneous long-chain polyphosphates from microalgal biomass

Ya‐Fen Lin et al.Oct 24, 2023
+5
T
S
Y
Summary Abstract Figure Graphical abstract Phosphate, an essential component of life, fertilizers, and detergents, is a finite resource that could be depleted within 70 years, while improper phosphate waste disposal in aquatic environments results in eutrophication. Despite some chemical-based methods, biological phosphorus removal using polyphosphate-accumulating organisms, such as microalgae, serves as a sustainable alternative to reclaim phosphate from wastewater. Polyphosphates have profound biological functions and biomedical applications, serving as energy stock, coagulation factors, and antiviral agents depending on their length, showing inherent value in polyphosphate recovery. Here, we leveraged the power of thermodynamic coupling and phase transitions to establish a one-pot, two-step multi-enzyme cascade to convert polydisperse polyphosphate in microalgae biomass into high-molecular-weight insoluble long-chain polyphosphates, allowing for one-step purification. We then optimzed a thermo-digestion approach to transform the 1,300-mers into shorter polyphosphates. Altogether, the processes established here enable the establishment of a sustainable P bioeconomy platform to refine microalgal biomass for biotechnological uses.