KG
Kristle Garcia
Author with expertise in RNA Methylation and Modification in Gene Expression
University of California, San Francisco, UCSF Helen Diller Family Comprehensive Cancer Center, Stanford Medicine
+ 4 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
9
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
35

An mRNA processing pathway suppresses metastasis by governing translational control from the nucleus

Albertas Navickas et al.Oct 24, 2023
+14
J
H
A
Abstract Cancer cells often co-opt post-transcriptional regulatory mechanisms to achieve pathologic expression of gene networks that drive metastasis. Translational control is a major regulatory hub in oncogenesis, however its effects on cancer progression remain poorly understood. To address this, we used ribosome profiling to compare genome-wide translation efficiencies of poorly and highly metastatic breast cancer cells and patient-derived xenografts. We developed novel regression-based methods to analyze ribosome profiling and alternative polyadenylation data, and identified HNRNPC as a translational controller of a specific mRNA regulon. Mechanistically, HNRNPC, in concert with PABPC4, binds near to poly(A) signals, thereby governing the alternative polyadenylation of a set of mRNAs. We found that HNRNPC and PABPC4 are downregulated in highly metastatic cells, which causes HNRNPC-bound mRNAs to undergo 3’ UTR lengthening and subsequently, translational repression. We showed that modulating HNRNPC expression impacts the metastatic capacity of breast cancer cells in xenograft mouse models. We also found that a small molecule, previously shown to induce a distal-to-proximal poly(A) site switching, counteracts the HNRNPC-PABPC4 driven deregulation of alternative polyadenylation and decreases the metastatic lung colonization by breast cancer cells in vivo .
26

Inhibition of muscarinic receptor signaling protects human enteric inhibitory neurons against platin chemotherapy toxicity

Mikayla Richter et al.Oct 24, 2023
+24
R
S
M
Abstract GI toxicity is a common dose-limiting adverse effect of platin chemotherapy treatment. Up to 50% of cancer survivors continue to experience symptoms of chronic constipation or diarrhea induced by their chemotherapy for many years after their treatment. This drug toxicity is largely attributed to damage to enteric neurons that innervate the GI tract and control GI motility. The mechanisms responsible for platin-induced enteric neurotoxicity and potential preventative strategies have remained unknown. Here, we use human pluripotent stem cell derived enteric neurons to establish a new model system capable of uncovering the mechanism of platin-induced enteric neuropathy. Utilizing this scalable system, we performed a high throughput screen and identified drug candidates and pathways involved in the disease. Our analyses revealed that excitotoxicity through muscarinic cholinergic signaling is a key driver of platin-induced enteric neuropathy. Using single nuclei transcriptomics and functional assays, we discovered that this disease mechanism leads to increased susceptibility of specific neuronal subtypes, including inhibitory nitrergic neurons, to platins. Histological assessment of the enteric nervous system in platin-treated patients confirmed the selective loss of nitrergic neurons. Finally, we demonstrated that pharmacological and genetic inhibition of muscarinic cholinergic signaling is sufficient to rescue enteric neurons from platin excitotoxicity in vitro and can prevent platin-induced constipation and degeneration of nitrergic neurons in mice. These studies define the mechanisms of platin-induced enteric neuropathy and serve as a framework for uncovering cell type-specific manifestations of cellular stress underlying numerous intractable peripheral neuropathies.
0

Systematic annotation of orphan RNAs reveals blood-accessible molecular barcodes of cancer identity and cancer-emergent oncogenic drivers

Jeffrey Wang et al.May 26, 2024
+13
B
J
J
From extrachromosomal DNA to neo-peptides, the broad reprogramming of the cancer genome leads to the emergence of molecules that are specific to the cancer state. We recently described orphan non-coding RNAs (oncRNAs) as a class of cancer-specific small RNAs with the potential to play functional roles in breast cancer progression1. Here, we report a systematic and comprehensive search to identify, annotate, and characterize cancer-emergent oncRNAs across 32 tumor types. We also leverage large-scale in vivo genetic screens in xenografted mice to functionally identify driver oncRNAs in multiple tumor types. We have not only discovered a large repertoire of oncRNAs, but also found that their presence and absence represent a digital molecular barcode that faithfully captures the types and subtypes of cancer. Importantly, we discovered that this molecular barcode is partially accessible from the cell-free space as some oncRNAs are secreted by cancer cells. In a large retrospective study across 192 breast cancer patients, we showed that oncRNAs can be reliably detected in the blood and that changes in the cell-free oncRNA burden captures both short-term and long-term clinical outcomes upon completion of a neoadjuvant chemotherapy regimen. Together, our findings establish oncRNAs as an emergent class of cancer-specific non-coding RNAs with potential roles in tumor progression and clinical utility in liquid biopsies and disease monitoring.
0
Paper
Citation1
0
Save
35

Generation of Schwann cell derived melanocytes from hPSCs identifies pro-metastatic factors in melanoma

Ryan Samuel et al.Oct 24, 2023
+15
A
A
R
Summary/Abstract The neural crest (NC) is highly multipotent and generates diverse lineages in the developing embryo. However, spatiotemporally distinct NC populations display differences in fate potential, such as increased gliogenic and parasympathetic potential from later migrating, nerve-associated Schwann cell precursors (SCPs). Interestingly, while melanogenic potential is shared by both early migrating NC and SCPs, differences in melanocyte identity resulting from differentiation through these temporally distinct progenitors have not been determined. Here, we leverage a human pluripotent stem cell (hPSC) model of NC temporal patterning to comprehensively characterize human NC heterogeneity, fate bias, and lineage development. We captured the transition of NC differentiation between temporally and transcriptionally distinct melanogenic progenitors and identified modules of candidate transcription factor and signaling activity associated with this transition. For the first time, we established a protocol for the directed differentiation of melanocytes from hPSCs through a SCP intermediate, termed trajectory 2 (T2) melanocytes. Leveraging an existing protocol for differentiating early NC-derived melanocytes, termed trajectory 1 (T1), we performed the first comprehensive comparison of transcriptional and functional differences between these distinct melanocyte populations, revealing differences in pigmentation and unique expression of transcription factors, ligands, receptors and surface markers. We found a significant link between the T2 melanocyte transcriptional signature and decreased survival in melanoma patients in the cancer genome atlas (TCGA). We performed an in vivo CRISPRi screen of T1 and T2 melanocyte signature genes in a human melanoma cell line and discovered several T2-specific markers that promote lung metastasis in mice. We further demonstrated that one of these factors, SNRPB, regulates the splicing of transcripts involved in metastasis relevant functions such as migration, cell adhesion and proliferation. Overall, this study identifies distinct developmental trajectories as a source of diversity in melanocytes and implicates the unique molecular signature of SCP-derived melanocytes in metastatic melanoma.
1

Integrative identification of non-coding regulatory regions driving metastatic prostate cancer

Brian Woo et al.Oct 24, 2023
+10
H
R
B
Large-scale sequencing efforts of thousands of tumor samples have been undertaken to understand the mutational landscape of the coding genome. However, the vast majority of germline and somatic variants occur within non-coding portions of the genome. These genomic regions do not directly encode for specific proteins, but can play key roles in cancer progression, for example by driving aberrant gene expression control. Here, we designed an integrative computational and experimental framework to identify recurrently mutated non-coding regulatory regions that drive tumor progression. Application of this approach to whole-genome sequencing (WGS) data from a large cohort of metastatic castration-resistant prostate cancer (mCRPC) revealed a large set of recurrently mutated regions. We used (i) in silico prioritization of functional non-coding mutations, (ii) massively parallel reporter assays, and (iii) in vivo CRISPR-interference (CRISPRi) screens in xenografted mice to systematically identify and validate driver regulatory regions that drive mCRPC. We discovered that one of these enhancer regions, GH22I030351, acts on a bidirectional promoter to simultaneously modulate expression of U2-associated splicing factor SF3A1 and chromosomal protein CCDC157. We found that both SF3A1 and CCDC157 are promoters of tumor growth in xenograft models of prostate cancer. We nominated a number of transcription factors, including SOX6, to be responsible for higher expression of SF3A1 and CCDC157. Collectively, we have established and confirmed an integrative computational and experimental approach that enables the systematic detection of non-coding regulatory regions that drive the progression of human cancers.
1

Learning chemical sensitivity reveals mechanisms of cellular response

William Connell et al.Oct 24, 2023
M
H
K
W
Abstract Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we developed ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we inferred the chemical sensitivity of cancer cell lines and tumor samples and analyzed how the model makes predictions. We retrospectively evaluated drug response predictions for precision breast cancer treatment and prospectively validated chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identified transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
0

A multiomics approach reveals RNA dynamics promote cellular sensitivity to DNA hypomethylation

Alex Ge et al.Sep 14, 2023
+10
R
A
A
SUMMARY The search for new approaches in cancer therapy requires a mechanistic understanding of cancer vulnerabilities and anti-cancer drug mechanisms of action. Problematically, some effective therapeutics target cancer vulnerabilities that have poorly defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline therapeutic approved for the treatment of high-risk acute myeloid leukemia (AML). Decitabine is thought to kill cancer cells selectively via inhibition of DNA methyltransferase enzymes, but the genes and mechanisms involved remain unclear. Here, we apply an integrated multiomics and CRISPR functional genomics approach to identify genes and processes associated with response to decitabine in AML cells. Our integrated multiomics approach reveals RNA dynamics are key regulators of DNA hypomethylation induced cell death. Specifically, regulation of RNA decapping, splicing and RNA methylation emerge as critical regulators of cellular response to decitabine.
1

A systematic comparison of fibroblasts derived from postmortem human dura mater versus dermal epithelium for neurodegenerative disease modeling

Andrea Argouarch et al.Oct 24, 2023
+9
K
C
A
ABSTRACT Patient-derived cells hold great promise for precision medicine approaches in human health. Fibroblast cells have been a major source of human cells for reprogramming and differentiating into specific cell types for disease modeling. Such cells can be isolated at various stages during life (presymptomatic, symptomatic, and postmortem) and thus can potentially be used to model different phases of disease progression. In certain circumstances, however, tissues are not collected during life and only postmortem tissues are the only available source of fibroblasts. Fibroblasts cultured from postmortem human dura mater of individuals with neurodegenerative diseases have been suggested as a primary source of cells for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols requires further characterization. In this study, cells derived from dermal biopsies performed in living subjects were compared to cells derived from postmortem dura mater. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences between the dermis and dura mater-derived cell lines were found. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, exhibited slower growth rates, failed to express fibroblast protein markers, and exhibited significant differences in gene expression profiles. In addition, dura mater-derived cells were found to exhibit a high rate of chromosomal abnormalities, particularly in the loss of the Y chromosome. Our study highlights potential limitations of postmortem human dura mater-derived cells for disease modeling, argues for rigorous karyotyping prior to reprograming, and brings into question the identity of dura mater-derived cells as belonging to a fibroblast lineage.
32

A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression

Bruce Culbertson et al.Oct 24, 2023
+9
D
K
B
Abstract Antisense RNAs are ubiquitous in human cells, yet the role that they play in healthy and diseased states remains largely unexplored. Here, we developed a computational framework to catalog and profile antisense RNAs and applied it to poorly and highly metastatic breast cancer cell lines. We identified one antisense RNA that plays a functional role in driving breast cancer progression by upregulating the redox enzyme NQO1, and hence named NQO1-antisense RNA or NQO1-AS. This upregulation occurs via a stabilizing interaction between NQO1-AS and its complementary region in the 3’UTR of NQO1 mRNA. By increasing expression of NQO1 protein, breast cancer cells are able to tolerate higher levels of oxidative stress, enabling them to colonize the lung. During this process the cancer cells become dependent on NQO1 to protect them from ferroptosis. We have shown that this dependence can be exploited therapeutically in xenograft models of metastasis. Together, our findings establish a previously unknown role for NQO1-AS in the progression of breast cancer by serving as a post-transcriptional regulator of RNA processing and decay for its sense mRNA.
1

Functional microRNA-Targeting Drug Discovery by Graph-Based Deep Learning

Arash Arshadi et al.Oct 24, 2023
+4
H
M
A
MicroRNAs are recognized as key drivers in many cancers, but targeting them with small molecules remains a challenge. We present RiboStrike, a deep learning framework that identifies small molecules against specific microRNAs. To demonstrate its capabilities, we applied it to microRNA-21 (miR-21), a known driver of breast cancer. To ensure the selected molecules only targeted miR-21 and not other microRNAs, we also performed a counter-screen against DICER, an enzyme involved in microRNA biogenesis. Additionally, we used auxiliary models to evaluate toxicity and select the best candidates. Using datasets from various sources, we screened a pool of nine million molecules and identified eight, three of which showed anti-miR-21 activity in both reporter assays and RNA sequencing experiments. One of these was also tested in mouse models of breast cancer, resulting in a significant reduction of lung metastases. These results demonstrate RiboStrike’s ability to effectively screen for microRNA-targeting compounds in cancer.
1
0
Save
Load More