BK
Brett Kaufman
Author with expertise in Brown Adipose Tissue Function and Physiology
University of Pittsburgh, University of Pittsburgh Medical Center, University of Pennsylvania
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
15
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
63

OxPhos Dysfunction Causes Hypermetabolism and Reduces Lifespan in Cells and in Patients with Mitochondrial Diseases

Gabriel Sturm et al.Oct 24, 2023
+26
A
K
G
Abstract Patients with primary mitochondrial diseases present with fatigue and multi-system disease, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. Integrating data from 17 cohorts of patients with mitochondrial diseases (n=690), we find that clinical mitochondrial disorders increase resting energy expenditure, a state termed hypermetabolism . In a longitudinal cellular model of primary patient-derived fibroblasts from multiple donors, we show that genetic and pharmacological disruptions of oxidative phosphorylation (OxPhos) similarly trigger increased energy consumption in a cell-autonomous manner, despite near-normal OxPhos coupling efficiency. Hypermetabolism is associated with mtDNA instability, activation of the integrated stress response, increased extracellular secretion of age-related cytokines and metabokines including GDF15, as well as an accelerated rate of telomere erosion and epigenetic aging, and a reduced Hayflick limit. Together with these dynamic measures, we have generated a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations in response to OxPhos dysfunction. The increased energetic cost of living, or hypermetabolism, in cells and organisms with OxPhos defects has important biological and clinical implications.
429

Cellular Allostatic Load is linked to Increased Energy Expenditure and Accelerated Biological Aging

Natalia Bobba-Alves et al.Oct 24, 2023
+14
J
G
N
Abstract Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.
429
Citation5
0
Save
9

Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis

Vaibhav Sidarala et al.Oct 24, 2023
+5
E
J
V
ABSTRACT The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in β-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient β-cells. Thus, the primary physiologic role of Mfn1 and 2 in β-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.
9
Paper
Citation2
0
Save
3

An automated, high throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma

Sarah Ware et al.Oct 24, 2023
+6
M
N
S
Abstract Circulating, cell-free mitochondrial DNA (ccf-mtDNA) and nuclear DNA (ccf-nDNA) are under investigation as biomarkers for various diseases. Optimal ccf-mtDNA isolation parameters, like those outlined for ccf-nDNA, have not been established. Here, we optimized a protocol for both ccf-mtDNA and ccf-nDNA recovery using a magnetic bead-based isolation process on an automated 96-well platform. Using the optimized protocol, our data show 6-fold improved yields of ccf-mtDNA when compared to the starting protocol. Digestion conditions, liquid handling characteristics, and magnetic particle processor programming all contributed to increased recovery and improved reproducibility. To our knowledge, this is the first high-throughput approach optimized for mtDNA and nDNA recovery and serves as an important starting point for clinical studies. Graphical Abstract
0

Psychobiological regulation of plasma and saliva GDF15 dynamics in health and mitochondrial diseases

Quan Huang et al.May 26, 2024
+24
A
C
Q
Abstract GDF15 (growth differentiation factor 15) is a marker of cellular energetic stress linked to physical-mental illness, aging, and mortality. However, questions remain about its dynamic properties and measurability in human biofluids other than blood. Here, we examine the natural dynamics and psychobiological regulation of plasma and saliva GDF15 in four human studies representing 4,749 samples from 188 individuals. We show that GDF15 protein is detectable in saliva (8% of plasma concentration), likely produced by salivary glands secretory duct cells. Plasma and saliva GDF15 levels are not correlated. Using a brief laboratory socio-evaluative stressor paradigm, we find that psychological stress increases plasma (+3.4-5.3%) and saliva GDF15 (+45%) with distinct kinetics, within minutes. Moreover, saliva GDF15 exhibits a robust awakening response, declining by ∼42-92% within 30-45 minutes from its peak level at the time of waking up. Clinically, individuals with genetic mitochondrial OxPhos diseases show elevated baseline plasma and saliva GDF15, and post-stress GDF15 levels in both biofluids correlate with multi-system disease severity, exercise intolerance, and the subjective experience of fatigue. Taken together, our data establish the dynamic properties of saliva GDF15, reveal it as a stress-sensitive, and as a clinically relevant marker of mitochondrial diseases. These findings point to a shared psychobiological pathway integrating metabolic and mental stress.
0
Paper
Citation1
0
Save
0

Acute Psychological Stress Triggers Circulating Cell-Free Mitochondrial DNA

Caroline Trumpff et al.May 7, 2020
+8
C
A
C
Intrinsic biological mechanisms transduce psychological stress into physiological adaptation, but the role of mitochondria and mitochondrial DNA (mtDNA) in this process has not been defined in humans. Here, we show that similar to physical injury, psychological stress triggers elevation in circulating cell-free mtDNA (ccf-mtDNA). Healthy midlife adults exposed on two separate occasions to a brief psychological challenge exhibit a 2-3-fold increase in ccf-mtDNA, with no change in nuclear DNA levels, establishing the magnitude and specificity to ccf-mtDNA. In cell-based studies, we show that glucocorticoid signaling - a consequence of psychological stress in humans - is sufficient to induce mtDNA extrusion in a time frame consistent with human psychophysiology. Collectively, these findings provide the first evidence that psychological stress induces ccf-mtDNA and implicate glucocorticoid signaling as a trigger for ccf-mtDNA release. Further work is needed to examine the functional significance of psychological stress-induced ccf-mtDNA as a mitokine in humans.
5

MitoQuicLy: a high-throughput method for quantifying cell-free DNA from human plasma, serum, and saliva

Jeremy Michelson et al.Oct 24, 2023
+6
A
S
J
Circulating cell-free mitochondrial DNA (cf-mtDNA) is an emerging biomarker of psychobiological stress and disease which predicts mortality and is associated with various disease states. To evaluate the contribution of cf-mtDNA to health and disease states, standardized high-throughput procedures are needed to quantify cf-mtDNA in relevant biofluids. Here, we describe MitoQuicLy: Mito chondrial DNA Qu antification in c ell-free samples by Ly sis. We demonstrate high agreement between MitoQuicLy and the commonly used column-based method, although MitoQuicLy is faster, cheaper, and requires a smaller input sample volume. Using 10 µL of input volume with MitoQuicLy, we quantify cf-mtDNA levels from three commonly used plasma tube types, two serum tube types, and saliva. We detect, as expected, significant inter-individual differences in cf-mtDNA across different biofluids. However, cf-mtDNA levels between concurrently collected plasma, serum, and saliva from the same individual differ on average by up to two orders of magnitude and are poorly correlated with one another, pointing to different cf-mtDNA biology or regulation between commonly used biofluids in clinical and research settings. Moreover, in a small sample of healthy women and men (n=34), we show that blood and saliva cf-mtDNAs correlate with clinical biomarkers differently depending on the sample used. The biological divergences revealed between biofluids, together with the lysis-based, cost-effective, and scalable MitoQuicLy protocol for biofluid cf-mtDNA quantification, provide a foundation to examine the biological origin and significance of cf-mtDNA to human health.
0

COVID-19 during pregnancy alters circulating extracellular vesicle cargo and their effects on trophoblast

Thea Golden et al.Feb 20, 2024
+10
L
S
T
SARS-CoV-2 infection and the resulting coronavirus disease (COVID-19) complicate pregnancies as the result of placental dysfunction which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests maternal response to infection is responsible for placental dysfunction. We hypothesized that maternal circulating extracellular vesicles (EVs) are altered by COVID-19 during pregnancy and contribute to placental dysfunction. To examine this, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their functional effect on trophoblast cells in vitro. We found the timing of infection is a major determinant of the effect of COVID-19 on circulating EVs. Additionally, we found differentially expressed EV mRNA cargo in COVID-19 groups compared to Controls that regulates the differential gene expression induced by COVID-19 in the placenta. In vitro exposure of trophoblasts to EVs isolated from patients with an active infection, but not EVs isolated from Controls, reduced key trophoblast functions including hormone production and invasion. This demonstrates circulating EVs from subjects with an active infection disrupt vital trophoblast function. This study determined that COVID-19 has a long-lasting effect on circulating EVs and circulating EVs are likely to participate in the placental dysfunction induced by COVID-19.
0

Petite Integration Factor 1 (PIF1) helicase deficiency increases weight gain in Western diet-fed female mice without increased inflammatory markers or decreased glucose clearance

Frances Belmonte et al.May 7, 2020
+10
I
N
F
Abstract Petite Integration Factor 1 (PIF1) is a multifunctional helicase present in nuclei and mitochondria. PIF1 knock out (KO) mice exhibit accelerated weight gain and decreased wheel running on a normal chow diet. In the current study, we investigated whether Pif1 removal alters whole body metabolism in response to weight gain. PIF1 KO and wild type (WT) C57BL/6J mice were fed a Western diet (WD) rich in fat and carbohydrates before evaluation of their metabolic phenotype. Compared with weight gain-resistant WT female mice, WD-fed PIF1 KO females, but not males, showed accelerated adipose deposition, decreased locomotor activity, and reduced whole-body energy expenditure without increased dietary intake. Surprisingly, PIF1 KO females were protected against obesity-induced alterations in fasting blood glucose and glucose clearance. WD-fed PIF1 KO females developed mild hepatic steatosis and associated changes in liver gene expression that were absent in weight-matched, WD-fed female controls, linking hepatic steatosis to Pif1 ablation rather than increased body weight. WD-fed PIF1 KO females also showed decreased gene expression of inflammatory markers in adipose tissue. Collectively, these data separated weight gain from inflammation and impaired glucose homeostasis. They also support a role for Pif1 in weight gain resistance and liver metabolic dysregulation during nutrient stress.
27

Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues

Gemma Pearson et al.Oct 24, 2023
+26
N
E
G
ABSTRACT Mitochondrial damage is a hallmark of metabolic diseases, including diabetes and metabolic dysfunction-associated steatotic liver disease, yet the consequences of impaired mitochondria in metabolic tissues are often unclear. Here, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity across multiple metabolic tissues. Surprisingly, we demonstrate that defects in the mitochondrial quality control machinery, which we observe in pancreatic β cells of humans with type 2 diabetes, cause reductions of β cell mass due to dedifferentiation, rather than apoptosis. Utilizing transcriptomic profiling, lineage tracing, and assessments of chromatin accessibility, we find that targeted deficiency anywhere in the mitochondrial quality control pathway ( e.g. , genome integrity, dynamics, or turnover) activate the mitochondrial integrated stress response and promote cellular immaturity in β cells, hepatocytes, and brown adipocytes. Intriguingly, pharmacologic blockade of mitochondrial retrograde signaling in vivo restores β cell mass and identity to ameliorate hyperglycemia following mitochondrial damage. Thus, we observe that a shared mitochondrial retrograde response controls cellular identity across metabolic tissues and may be a promising target to treat or prevent metabolic disorders.
Load More