AN
Andrew Nobel
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(95% Open Access)
Cited by:
31,763
h-index:
44
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Repeated observation of breast tumor subtypes in independent gene expression data sets

Thérese Sørlie et al.Jun 26, 2003
Characteristic patterns of gene expression measured by DNA microarrays have been used to classify tumors into clinically relevant subgroups. In this study, we have refined the previously defined subtypes of breast tumors that could be distinguished by their distinct patterns of gene expression. A total of 115 malignant breast tumors were analyzed by hierarchical clustering based on patterns of expression of 534 “intrinsic” genes and shown to subdivide into one basal-like, one ERBB2 -overexpressing, two luminal-like, and one normal breast tissue-like subgroup. The genes used for classification were selected based on their similar expression levels between pairs of consecutive samples taken from the same tumor separated by 15 weeks of neoadjuvant treatment. Similar cluster analyses of two published, independent data sets representing different patient cohorts from different laboratories, uncovered some of the same breast cancer subtypes. In the one data set that included information on time to development of distant metastasis, subtypes were associated with significant differences in this clinical feature. By including a group of tumors from BRCA1 carriers in the analysis, we found that this genotype predisposes to the basal tumor subtype. Our results strongly support the idea that many of these breast tumor subtypes represent biologically distinct disease entities.
0
Citation5,274
0
Save
0

The molecular portraits of breast tumors are conserved across microarray platforms

Zhiyuan Hu et al.Apr 27, 2006
Abstract Background Validation of a novel gene expression signature in independent data sets is a critical step in the development of a clinically useful test for cancer patient risk-stratification. However, validation is often unconvincing because the size of the test set is typically small. To overcome this problem we used publicly available breast cancer gene expression data sets and a novel approach to data fusion, in order to validate a new breast tumor intrinsic list. Results A 105-tumor training set containing 26 sample pairs was used to derive a new breast tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation signature that was not present in previous breast intrinsic gene sets. We tested this list as a survival predictor on a data set of 311 tumors compiled from three independent microarray studies that were fused into a single data set using Distance Weighted Discrimination. When the new intrinsic gene set was used to hierarchically cluster this combined test set, tumors were grouped into LumA, LumB, Basal-like, HER2+/ER-, and Normal Breast-like tumor subtypes that we demonstrated in previous datasets. These subtypes were associated with significant differences in Relapse-Free and Overall Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic subtype classifications added significant prognostic information that was independent of standard clinical predictors. From the combined test set, we developed an objective and unchanging classifier based upon five intrinsic subtype mean expression profiles (i.e. centroids), which is designed for single sample predictions (SSP). The SSP approach was applied to two additional independent data sets and consistently predicted survival in both systemically treated and untreated patient groups. Conclusion This study validates the "breast tumor intrinsic" subtype classification as an objective means of tumor classification that should be translated into a clinical assay for further retrospective and prospective validation. In addition, our method of combining existing data sets can be used to robustly validate the potential clinical value of any new gene expression profile.
0
Citation1,315
0
Save
0

Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival

Victor Weigman et al.Nov 2, 2011
Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher's exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11-35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.
0
Citation872
0
Save
Load More