MS
Matthew Sacchet
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
73
h-index:
41
/
i10-index:
78
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping Cortical Brain Asymmetry in 17,141 Healthy Individuals Worldwide via the ENIGMA Consortium

Xiangzhen Kong et al.Oct 1, 2017
Abstract Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and brain size (indexed by intracranial volume). Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets ( N = 1,443 and 1,113, respectively), we found several asymmetries showing modest but highly reliable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders. Significance Statement Left-right asymmetry is a key feature of the human brain's structure and function. It remains unclear which cortical regions are asymmetrical on average in the population, and how biological factors such as age, sex and genetic variation affect these asymmetries. Here we describe by far the largest ever study of cerebral cortical brain asymmetry, based on data from 17,141 participants. We found a global anterior-posterior 'torque' pattern in cortical thickness, together with various regional asymmetries at the population level, which have not been previously described, as well as effects of age, sex, and heritability estimates. From these data, we have created an on-line resource that will serve future studies of human brain anatomy in health and disease.
0

Subcortical Shape Alterations in Major Depressive Disorder: Findings from the ENIGMA Major Depressive Disorder Working Group

Tiffany Ho et al.Feb 1, 2019
Abstract Alterations in regional subcortical brain volumes have been widely investigated as part of the efforts of an international consortium, ENIGMA, to determine reliable structural brain signatures for Major Depressive Disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work to precisely map localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with MDD had lower surface area in the subiculum of the hippocampus, the basolateral amygdala, and the nucleus accumbens shell. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum of the hippocampus and the basolateral amygdala. Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala. Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.
0
Citation20
0
Save
34

Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 3-90 years

Danai Dima et al.May 7, 2020
Abstract Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalised on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine the age-related morphometric trajectories of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum early in life; the volume of the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the thalamus, amygdala and the hippocampus remained largely stable (with some degree of decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan. Significant age-related increase in inter-individual variability was found for the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to derive risk predictions for the early identification of diverse clinical phenotypes.
0

Cessations of consciousness in meditation: Advancing a scientific understanding of nirodha samāpatti

Ruben Laukkonen et al.Jan 1, 2023
Absence of consciousness can occur due to a concussion, anesthetization, intoxication, epileptic seizure, or other fainting/syncope episode caused by lack of blood flow to the brain. However, some meditation practitioners also report that it is possible to undergo a total absence of consciousness during meditation, lasting up to 7 days, and that these "cessations" can be consistently induced. One form of extended cessation (i.e., nirodha samāpatti) is thought to be different from sleep because practitioners are said to be completely impervious to external stimulation. That is, they cannot be 'woken up' from the cessation state as one might be from a dream. Cessations are also associated with the absence of any time experience or tiredness, and are said to involve a stiff rather than a relaxed body. Emergence from meditation-induced cessations is said to have profound effects on subsequent cognition and experience (e.g., resulting in a sudden sense of clarity, openness, and possibly insights). In this paper, we briefly outline the historical context for cessation events, present preliminary data from two labs, set a research agenda for their study, and provide an initial framework for understanding what meditation induced cessation may reveal about the mind and brain. We conclude by integrating these so-called nirodha and nirodha samāpatti experiences-as they are known in classical Buddhism-into current cognitive-neurocomputational and active inference frameworks of meditation.
0
Citation12
0
Save
7

A Large-Scale ENIGMA Multisite Replication Study of Brain Age in Depression

Laura Han et al.Aug 29, 2022
ABSTRACT Background Several studies have evaluated whether depressed persons have older appearing brains than their nondepressed peers. However, the estimated neuroimaging-derived “brain age gap” has varied from study to study, likely driven by differences in training and testing sample (size), age range, and used modality/features. To validate our previously developed ENIGMA brain age model and the identified brain age gap, we aim to replicate the presence and effect size estimate previously found in the largest study in depression to date (N=2,126 controls & N=2,675 cases; +1.08 years [SE 0.22], Cohen’s d=0.14, 95% CI: 0.08-0.20), in independent cohorts that were not part of the original study. Methods A previously trained brain age model ( www.photon-ai.com/enigma_brainage ) based on 77 FreeSurfer brain regions of interest was used to obtain unbiased brain age predictions in 751 controls and 766 persons with depression (18-75 years) from 13 new cohorts collected from 20 different scanners. Results Our ENIGMA MDD brain age model generalized reasonably well to controls from the new cohorts (predicted age vs. age: r = 0.73, R 2 =0.47, MAE=7.50 years), although the performance varied from cohort to cohort. In these new cohorts, on average, depressed persons showed a significantly higher brain age gap of +1 year (SE 0.35) (Cohen’s d□=□□.15, 95% CI: 0.05–0.25) compared with controls, highly similar to our previous finding. Conclusions This study further validates our previously developed ENIGMA brain age algorithm. Importantly, we replicated the brain age gap in depression with a comparable effect size. Thus, two large-scale independent mega-analyses across in total 32 cohorts and >3,400 patients and >2,800 controls worldwide show reliable but subtle effects of brain aging in adult depression.
0

Brain Aging in Major Depressive Disorder: Results from the ENIGMA Major Depressive Disorder working group

Laura Han et al.Feb 26, 2019
Background: Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in MDD patients, and whether this process is associated with clinical characteristics in a large multi-center international dataset. Methods: We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 29 samples worldwide. Normative brain aging was estimated by predicting chronological age (10-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 1,147 male and 1,386 female controls from the ENIGMA MDD working group. The learned model parameters were applied to 1,089 male controls and 1,167 depressed males, and 1,326 female controls and 2,044 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted brain age and chronological age was calculated to indicate brain predicted age difference (brain-PAD). Findings: On average, MDD patients showed a higher brain-PAD of +0.90 (SE 0.21) years (Cohen's d=0.12, 95% CI 0.06-0.17) compared to controls. Relative to controls, first-episode and currently depressed patients showed higher brain-PAD (+1.2 [0.3] years), and the largest effect was observed in those with late-onset depression (+1.7 [0.7] years). In addition, higher brain-PAD was associated with higher self-reported depressive symptomatology (b=0.05, p=0.004). Interpretation: This highly powered collaborative effort showed subtle patterns of abnormal structural brain aging in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the predictive value of these brain-PAD estimates.
0

Decoupling of Dopamine Release and Neural Activity in Major Depressive Disorder during Reward Processing Assessed by Simultaneous fPET-fMRI

Xue Zhang et al.Dec 2, 2019
The interaction of the midbrain dopaminergic system and the striatum is implicated in reward processing; it is still unknown, however, how this interaction is altered in Major Depressive Disorder (MDD). In the current study, we related the dopamine release/binding inferred by [11C] Raclopride functional Positron Emission Tomography (fPET) to neural activity monitored by blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in adults diagnosed with MDD and healthy controls (CTL). Participants completed a monetary incentive delay (MID) task during simultaneous [11C] Raclopride fPET and fMRI. Instead of the usual kinetic modeling method for analyzing dynamic PET time activity curves (TACs), we used a simpler general linear model (GLM) approach, which includes introducing a fPET dopamine activation response function to model changes in the TAC associated with the MID task. In addition, using simulations, we show that the GLM approach has several advantages over kinetic modeling. This is achieved without invoking erroneous steady-state assumptions or selecting a suitable reference region. Our results include the observation of both decreased fMRI activation and dopamine release/binding in the striatum in the MDD cohort, implying a reduced reward processing capacity in MDD. Furthermore, in the MDD group, individuals with lower fMRI activations in the right middle putamen and ventral medial prefrontal cortex (vmPFC) had higher reflection rumination scores, and individuals with lower dopamine release/binding in the left putamen and the right nucleus accumbens (NAcc) also had higher reflection rumination scores. Significant cross-modal inter-subject and intra-subject correlations of dopamine release/binding and fMRI activation were observed in the CTL group, but not in the MDD group. The intra-subject correlation of the two modalities was negatively associated with reflection rumination scores in the CTL group, indicating that decoupling of the dopaminergic system and striatum may be important in the pathophysiology of MDD.
Load More