GL
Glyn Lewis
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
62
h-index:
39
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder

Naomi Wray et al.Jul 24, 2017
Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality, substantial costs, and heightened risk of suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, and identified 44 independent loci that met criteria for statistical significance. We present extensive analyses of these results which provide new insights into the nature of MDD. The genetic findings were associated with clinical features of MDD, and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between MDD cases and controls). Genes that are targets of antidepressant medications were strongly enriched for MDD association signals (P=8.5×10 −10 ), suggesting the relevance of these findings for improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower educational attainment and higher body mass were putatively causal for MDD whereas MDD and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a useful clinical construct associated with a range of adverse outcomes and the end result of a complex process of intertwined genetic and environmental effects. These findings help refine and define the fundamental basis of MDD.
0
Citation62
0
Save
0

Genetic variation in the Major Histocompatibility Complex and association with depression

Kylie Glanville et al.Nov 19, 2018
Background: The prevalence of depression is higher in individuals suffering from autoimmune diseases, but the mechanisms underlying the observed comorbidities are unknown. Epidemiological findings point to a bi-directional relationship - that depression increases the risk of developing an autoimmune disease, and vice-versa. Shared genetic etiology is a plausible explanation for the overlap between depression and autoimmune diseases. In this study we tested whether genetic variation in the Major Histocompatibility Complex (MHC), which is associated with risk for autoimmune diseases, is also associated with risk for depression. Method: We fine-mapped the classical MHC (chr6: 29.6-33.1 Mb), imputing 216 Human Leukocyte Antigen (HLA) alleles and four Complement Component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium (PGC) Major Depressive Disorder (MDD) working group and the UK Biobank (UKB). In the 26 PGC-MDD studies, cases met a lifetime diagnosis of MDD, determined by a structured diagnostic interview. In the UKB, cases and controls were identified from an online mental health questionnaire. The total sample size was 45,149 depression cases and 86,698 controls. We tested for association between depression status and imputed MHC variants in each study and performed an inverse-variance weighted meta-analysis across the PGC-MDD and UKB samples, applying both a conservative region-wide significance threshold (3.9-e6) and a candidate threshold (1.6e-4). Results: No HLA alleles or C4 haplotypes were associated with depression at the conservative threshold in the PGC, UKB or meta-analysis. HLA-B*08:01 was associated with modest protection for depression at the candidate threshold in the meta-analysis. Under the conservative threshold, 70 SNPs were detected in the UKB and 143 SNPs were detected in the meta-analysis, mirroring previous findings from highly powered GWAS of depression. Discussion: We found no evidence that HLA alleles, which play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly associated with schizophrenia, confer risk for depression. These results indicate that autoimmune diseases and depression do not share common risk loci of moderate or large effect in the MHC.
0

Pharmacogenetics of antidepressant response: a polygenic approach

Judit García‐González et al.Dec 14, 2016
Background: Major depressive disorder (MDD) has a high personal and socio-economic burden and more than 60% of patients fail to achieve remission with the first antidepressant. The biological mechanisms behind antidepressant response are only partially known but genetic factors play a relevant role. A combined predictor across genetic variants may be useful to investigate this complex trait. Methods: Polygenic risk scores (PRS) were used to estimate multi-allelic contribution to: 1) antidepressant efficacy; 2) its overlap with MDD and schizophrenia. We constructed PRS and tested whether these predicted symptom improvement or remission from the GENDEP study (n=736) to the STAR*D study (n=1409) and vice-versa, including the whole sample or only patients treated with escitalopram or citalopram. Using summary statistics from Psychiatric Genomics Consortium for MDD and schizophrenia, we tested whether PRS from these disorders predicted symptom improvement in GENDEP, STAR*D, and five further studies (n=3756). Results: No significant prediction of antidepressant efficacy was obtained from PRS in GENDEP/STAR*D but this analysis might have been underpowered. There was no evidence of overlap in the genetics of antidepressant response with either MDD or schizophrenia, either in individual studies or a meta-analysis. Stratifying by antidepressant did not alter the results. Discussion: We identified no significant predictive effect using PRS between pharmacogenetic studies. The genetic liability to MDD or schizophrenia did not predict response to antidepressants, suggesting differences between the genetic component of depression and treatment response. Larger or more homogeneous studies will be necessary to obtain a polygenic predictor of antidepressant response.
0

New insights on the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation

Chiara Fabbri et al.Feb 20, 2017
Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at SNP, gene and pathway level. Coverage of genetic variants was increased compared to previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) served for replication. 7,062,950 SNPs were analysed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (p=1.80e-08, ITGA9 (integrin alpha 9)) and rs76191705 (p=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At gene level, no consistent effect was found. At pathway level, the Gene Ontology terms GO:0005694 (chromosome) and GO:0044427 (chromosomal part) were associated with improvement (corrected p=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (p=0.047), while rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, no convincing replication was achieved. Further studies may help in clarifying their role.
0

Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: meta-analysis of data from genome-wide association studies

Chiara Fabbri et al.Feb 6, 2018
Cytochrome (CYP) P450 enzymes have a primary role in antidepressant metabolism and variants in these polymorphic genes are targets for pharmacogenetic investigation. This is the first meta-analysis to investigate how CYP2C19 polymorphisms predict citalopram/escitalopram efficacy and side effects. CYP2C19 phenotypes comprise poor metabolizers (PM), intermediate and intermediate+ metabolizers (IM; IM+), extensive and extensive+ metabolizers (EM [wild type]; EM+) and ultra-rapid metabolizers (UM) defined by the two most common CYP2C19 functional polymorphisms (rs4244285 and rs12248560) in Caucasians. These polymorphisms were genotyped or imputed from genome-wide data in four samples treated with citalopram or escitalopram (GENDEP, STAR*D, GenPod, PGRN-AMPS). Treatment efficacy was percentage symptom improvement and remission. Side effect data were available at weeks 2-4, 6 and 9 in three of the investigated samples. A fixed-effects meta-analysis was performed using EM as the reference group. Analysis of 2558 patients for efficacy and 2037 patients for side effects showed that PMs had higher symptom improvement (SMD=0.43, CI=0.19-0.66) and higher remission rates (OR=1.55, CI=1.23-1.96) compared to EMs. At weeks 2-4, PMs showed higher risk of gastro-intestinal (OR=1.26, CI=1.08-1.47), neurological (OR=1.28, CI=1.07-1.53) and sexual side effects (OR=1.52, CI=1.23-1.87; week 6 values similar). No difference was seen at week 9 or in total side effect burden. PMs did not have higher risk of dropout at week 4 compared to EMs. Antidepressant dose was not different among CYP2C19 groups. CYP2C19 polymorphisms may provide helpful information for guiding citalopram/escitalopram treatment, despite PMs are relatively rare among Caucasians (~2%).