AB
Adam Butterworth
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
63
(65% Open Access)
Cited by:
22,672
h-index:
94
/
i10-index:
215
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data

Stephen Burgess et al.Sep 20, 2013
ABSTRACT Genome‐wide association studies, which typically report regression coefficients summarizing the associations of many genetic variants with various traits, are potentially a powerful source of data for Mendelian randomization investigations. We demonstrate how such coefficients from multiple variants can be combined in a Mendelian randomization analysis to estimate the causal effect of a risk factor on an outcome. The bias and efficiency of estimates based on summarized data are compared to those based on individual‐level data in simulation studies. We investigate the impact of gene–gene interactions, linkage disequilibrium, and ‘weak instruments’ on these estimates. Both an inverse‐variance weighted average of variant‐specific associations and a likelihood‐based approach for summarized data give similar estimates and precision to the two‐stage least squares method for individual‐level data, even when there are gene–gene interactions. However, these summarized data methods overstate precision when variants are in linkage disequilibrium. If the P ‐value in a linear regression of the risk factor for each variant is less than , then weak instrument bias will be small. We use these methods to estimate the causal association of low‐density lipoprotein cholesterol (LDL‐C) on coronary artery disease using published data on five genetic variants. A 30% reduction in LDL‐C is estimated to reduce coronary artery disease risk by 67% (95% CI: 54% to 76%). We conclude that Mendelian randomization investigations using summarized data from uncorrelated variants are similarly efficient to those using individual‐level data, although the necessary assumptions cannot be so fully assessed.
0
Citation3,859
0
Save
0

Genomic atlas of the human plasma proteome

Benjamin Sun et al.May 29, 2018
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. A genetic atlas of the human plasma proteome, comprising 1,927 genetic associations with 1,478 proteins, identifies causes of disease and potential drug targets.
0
Citation1,519
0
Save
0

The genetic architecture of type 2 diabetes

Christian Fuchsberger et al.Jul 11, 2016
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
0
Citation1,018
0
Save
0

SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe

Steven Hageman et al.May 5, 2021
Abstract Aims The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40–69 years in Europe. Methods and results We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65–0.68) to 0.81 (0.76–0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusion SCORE2—a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations—enhances the identification of individuals at higher risk of developing CVD across Europe.
0

Association of Cardiometabolic Multimorbidity With Mortality

Emanuele Angelantonio et al.Jul 7, 2015

Importance

 The prevalence of cardiometabolic multimorbidity is increasing. 

Objective

 To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. 

Design, Setting, and Participants

 Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689 300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128 843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499 808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. 

Exposures

 A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). 

Main Outcomes and Measures

 All-cause mortality and estimated reductions in life expectancy. 

Results

 In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. 

Conclusions and Relevance

 Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.
0

Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies

Frances Wensley et al.May 1, 2010
BackgroundWhether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality.MethodsWe assessed the −1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20 842 patients with coronary heart disease, 35 206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12 785 incident cases of coronary heart disease during 2·79 million person-years at risk). We analysed −1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy.FindingsThe minor allele frequency of −1131T>C was 8% (95% CI 7–9). −1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3·5% [95% CI 2·6–4·6]; 0·053 mmol/L [0·039–0·068]), lower apolipoprotein AI (1·3% [0·3–2·3]; 0·023 g/L [0·005–0·041]), and higher apolipoprotein B (3·2% [1·3–5·1]; 0·027 g/L [0·011–0·043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16·0% (95% CI 12·9–18·7), or 0·25 mmol/L (0·20–0·29), higher (p=4·4×10−24). The odds ratio for coronary heart disease was 1·18 (95% CI 1·11–1·26; p=2·6×10−7) per C allele, which was concordant with the hazard ratio of 1·10 (95% CI 1·08–1·12) per 16% higher triglyceride concentration recorded in prospective studies. −1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12·2 nmol/L [95% CI 7·7–16·7]; p=9·3×10−8) and smaller HDL particle size (0·14 nm [0·08–0·20]; p=7·0×10−5), factors that could mediate the effects of triglyceride.InterpretationThese data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease.FundingBritish Heart Foundation, UK Medical Research Council, Novartis.
0
Citation663
0
Save
Load More