YX
Yali Xue
Author with expertise in Genomic Analysis of Ancient DNA
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(72% Open Access)
Cited by:
8,374
h-index:
57
/
i10-index:
104
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Insights into hominid evolution from the gorilla genome sequence

Aylwyn Scally et al.Mar 1, 2012
Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human–chimpanzee and human–chimpanzee–gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. The genome of a western lowland gorilla has been sequenced and analysed, completing the genome sequences of all great ape genera, and providing evidence for parallel accelerated evolution in chimpanzee, gorilla and human lineages at a number of loci. The genome of the gorilla has been sequenced, making it possible to compare the DNA of the four surviving hominid genera: human, chimpanzee, gorilla and orang-utan. The data — mainly from a female western lowland gorilla named Kamilah, but also from other gorillas representing both the western lowland and eastern lowland sub-species — imply that in almost one-third of its genome, the gorilla is closer to the human or chimpanzee than the human and chimp are to each other. Around 500 genes show accelerated evolution in gorilla, human and chimpanzee lineages, and there is evidence for parallel acceleration, particularly in genes associated with hearing. On the basis of genetic and fossil evidence, the authors suggest that the human–chimpanzee and human–chimpanzee–gorilla speciation events occurred at around 6 million and 10 million years ago respectively, whereas the two gorilla species diverged around 1.75 million years ago.
0
Citation749
0
Save
0

IFITM3 restricts the morbidity and mortality associated with influenza

Aaron Everitt et al.Mar 23, 2012
Interferon-inducible transmembrane (IFITM) protein 3 is shown to be an innate defence mechanism against viral infection in vivo; furthermore, a subset of the patients hospitalized during the H1N1 2009 pandemic carried a variant form of the IFITM3 gene. Interferon-inducible transmembrane (IFITM) proteins restrict the replication of certain pathogenic viruses, but no in vivo role for these proteins has been known until now. Paul Kellam and colleagues now report that IFITM3 is essential for protecting mice infected with influenza viruses from developing fulminant viral pneumonia. The authors further find that a small subset of humans hospitalized for infection with pandemic H1N1/09 swine flu or seasonal influenza virus carried a variant of IFITM3 with reduced antiviral activity. These results suggest that IFITM3 has a pivotal role in defence against influenza infection. The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses1,2,3,4,5,6,7. Both the magnitude and breadth of the IFITM proteins’ in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model8, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 ‘Spanish’ influenza9,10. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.
0
Citation742
0
Save
0

A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

Patrick Tarpey et al.Apr 19, 2009
Tarpey et al. carry out a large-scale systematic sequencing of the majority of X-chromosome coding exons from 208 families with multiple individuals with mental retardation and a pattern of transmission compatible with X linkage in order to identify XLMR-causative mutations. They find several mutations that appear to be causative in loci already known to be involved in XLMR, as well as new data about those loci, and make inferences about the role of the different classes of variants in these diseases. Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.
0
Citation589
0
Save
1

The African Genome Variation Project shapes medical genetics in Africa

Deepti Gurdasani et al.Dec 2, 2014
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa. The African Genome Variation Project contains the whole-genome sequences of 320 individuals and dense genotypes on 1,481 individuals from sub-Saharan Africa; it enables the design and interpretation of genomic studies, with implications for finding disease loci and clues to human origins. The African Genome Variation Project (AGVP) is collecting data on the structure of African genomes to provide a central resource for genetic disease studies in Africa. It currently represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using these data, Manjinder Sandhu and colleagues identify new loci under selection, including those associated with malaria and hypertension. They show that modern imputation panels can identify association signals at highly differentiated loci across population groups. They demonstrate the utility of whole-genome sequences in further improving the imputation accuracy. In addition, they describe the first efficient genotype array design capturing common genetic variation in Africa.
1
Citation525
-1
Save
Load More