GR
Gajendra Raghava
Author with expertise in Prediction of Peptide-MHC Binding Affinity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
87
(77% Open Access)
Cited by:
10,081
h-index:
82
/
i10-index:
263
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In Silico Approach for Predicting Toxicity of Peptides and Proteins

Sudheer Gupta et al.Sep 13, 2013
Background Over the past few decades, scientific research has been focused on developing peptide/protein-based therapies to treat various diseases. With the several advantages over small molecules, including high specificity, high penetration, ease of manufacturing, peptides have emerged as promising therapeutic molecules against many diseases. However, one of the bottlenecks in peptide/protein-based therapy is their toxicity. Therefore, in the present study, we developed in silico models for predicting toxicity of peptides and proteins. Description We obtained toxic peptides having 35 or fewer residues from various databases for developing prediction models. Non-toxic or random peptides were obtained from SwissProt and TrEMBL. It was observed that certain residues like Cys, His, Asn, and Pro are abundant as well as preferred at various positions in toxic peptides. We developed models based on machine learning technique and quantitative matrix using various properties of peptides for predicting toxicity of peptides. The performance of dipeptide-based model in terms of accuracy was 94.50% with MCC 0.88. In addition, various motifs were extracted from the toxic peptides and this information was combined with dipeptide-based model for developing a hybrid model. In order to evaluate the over-optimization of the best model based on dipeptide composition, we evaluated its performance on independent datasets and achieved accuracy around 90%. Based on above study, a web server, ToxinPred has been developed, which would be helpful in predicting (i) toxicity or non-toxicity of peptides, (ii) minimum mutations in peptides for increasing or decreasing their toxicity, and (iii) toxic regions in proteins. Conclusion ToxinPred is a unique in silico method of its kind, which will be useful in predicting toxicity of peptides/proteins. In addition, it will be useful in designing least toxic peptides and discovering toxic regions in proteins. We hope that the development of ToxinPred will provide momentum to peptide/protein-based drug discovery (http://crdd.osdd.net/raghava/toxinpred/).
0

Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network

Sudipto Saha et al.Aug 7, 2006
B-cell epitopes play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research. Experimental methods used for characterizing epitopes are time consuming and demand large resources. The availability of epitope prediction method(s) can rapidly aid experimenters in simplifying this problem. The standard feed-forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B-cell epitopes in an antigenic sequence. The networks have been trained and tested on a clean data set, which consists of 700 non-redundant B-cell epitopes obtained from Bcipep database and equal number of non-epitopes obtained randomly from Swiss-Prot database. The networks have been trained and tested at different input window length and hidden units. Maximum accuracy has been obtained using recurrent neural network (Jordan network) with a single hidden layer of 35 hidden units for window length of 16. The final network yields an overall prediction accuracy of 65.93% when tested by fivefold cross-validation. The corresponding sensitivity, specificity, and positive prediction values are 67.14, 64.71, and 65.61%, respectively. It has been observed that RNN (JE) was more successful than FNN in the prediction of B-cell epitopes. The length of the peptide is also important in the prediction of B-cell epitopes from antigenic sequences. The webserver ABCpred is freely available at www.imtech.res.in/raghava/abcpred/.
0
Citation1,446
0
Save
0

AlgPred: prediction of allergenic proteins and mapping of IgE epitopes

Sudipto Saha et al.Jul 1, 2006
In this study a systematic attempt has been made to integrate various approaches in order to predict allergenic proteins with high accuracy. The dataset used for testing and training consists of 578 allergens and 700 non-allergens obtained from A. K. Bjorklund, D. Soeria-Atmadja, A. Zorzet, U. Hammerling and M. G. Gustafsson (2005) Bioinformatics , 21 , 39–50. First, we developed methods based on support vector machine using amino acid and dipeptide composition and achieved an accuracy of 85.02 and 84.00%, respectively. Second, a motif-based method has been developed using MEME/MAST software that achieved sensitivity of 93.94 with 33.34% specificity. Third, a database of known IgE epitopes was searched and this predicted allergenic proteins with 17.47% sensitivity at specificity of 98.14%. Fourth, we predicted allergenic proteins by performing BLAST search against allergen representative peptides. Finally hybrid approaches have been developed, which combine two or more than two approaches. The performance of all these algorithms has been evaluated on an independent dataset of 323 allergens and on 101 725 non-allergens obtained from Swiss-Prot. A web server AlgPred has been developed for the predicting allergenic proteins and for mapping IgE epitopes on allergenic proteins ( http://www.imtech.res.in/raghava/algpred/ ). AlgPred is available at www.imtech.res.in/raghava/algpred/ .
0
Citation685
0
Save
0

Designing of interferon-gamma inducing MHC class-II binders

Sandeep Dhanda et al.Dec 1, 2013
Abstract Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4 + T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis . In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen ( http://crdd.osdd.net/raghava/ifnepitope/ ). Reviewers This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai.
0
Citation653
0
Save
0

ProPred1: prediction of promiscuous MHC Class-I binding sites

Harpreet Singh et al.May 21, 2003
Abstract Summary: ProPred1 is an on-line web tool for the prediction of peptide binding to MHC class-I alleles. This is a matrix-based method that allows the prediction of MHC binding sites in an antigenic sequence for 47 MHC class-I alleles. The server represents MHC binding regions within an antigenic sequence in user-friendly formats. These formats assist user in the identification of promiscuous MHC binders in an antigen sequence that can bind to large number of alleles. ProPred1 also allows the prediction of the standard proteasome and immunoproteasome cleavage sites in an antigenic sequence. This server allows identification of MHC binders, who have the cleavage site at the C terminus. The simultaneous prediction of MHC binders and proteasome cleavage sites in an antigenic sequence leads to the identification of potential T-cell epitopes. Availability: Server is available at http://www.imtech.res.in/raghava/propred1/. Mirror site of this server is available at http://bioinformatics.uams.edu/mirror/propred1/ Supplementary information: Matrices and document on server are available at http://www.imtech.res.in/raghava/propred1/page2.html Contact: raghava@imtech.res.in * To whom correspondence should be addressed at Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh, India.
0
Citation429
0
Save
0

Prediction of CTL epitopes using QM, SVM and ANN techniques

Manoj Bhasin et al.Mar 6, 2004
Cytotoxic T lymphocyte (CTL) epitopes are potential candidates for subunit vaccine design for various diseases. Most of the existing T cell epitope prediction methods are indirect methods that predict MHC class I binders instead of CTL epitopes. In this study, a systematic attempt has been made to develop a direct method for predicting CTL epitopes from an antigenic sequence. This method is based on quantitative matrix (QM) and machine learning techniques such as Support Vector Machine (SVM) and Artificial Neural Network (ANN). This method has been trained and tested on non-redundant dataset of T cell epitopes and non-epitopes that includes 1137 experimentally proven MHC class I restricted T cell epitopes. The accuracy of QM-, ANN- and SVM-based methods was 70.0, 72.2 and 75.2%, respectively. The performance of these methods has been evaluated through Leave One Out Cross-Validation (LOOCV) at a cutoff score where sensitivity and specificity was nearly equal. Finally, both machine-learning methods were used for consensus and combined prediction of CTL epitopes. The performances of these methods were evaluated on blind dataset where machine learning-based methods perform better than QM-based method. We also demonstrated through subgroup analysis that our methods can discriminate between T-cell epitopes and MHC binders (non-epitopes). In brief this method allows prediction of CTL epitopes using QM, SVM, ANN approaches. The method also facilitates prediction of MHC restriction in predicted T cell epitopes. The method is available at http://www.imtech.res.in/raghava/ctlpred/.
0

Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence

Harinder Singh et al.May 7, 2013
One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair) profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/).
0

Identification of conformational B-cell Epitopes in an antigen from its primary sequence

Hifzur Ansari et al.Jan 1, 2010
Background One of the major challenges in the field of vaccine design is to predict conformational B-cell epitopes in an antigen. In the past, several methods have been developed for predicting conformational B-cell epitopes in an antigen from its tertiary structure. This is the first attempt in this area to predict conformational B-cell epitope in an antigen from its amino acid sequence. Results All Support vector machine (SVM) models were trained and tested on 187 non-redundant protein chains consisting of 2261 antibody interacting residues of B-cell epitopes. Models have been developed using binary profile of pattern (BPP) and physiochemical profile of patterns (PPP) and achieved a maximum MCC of 0.22 and 0.17 respectively. In this study, for the first time SVM model has been developed using composition profile of patterns (CPP) and achieved a maximum MCC of 0.73 with accuracy 86.59%. We compare our CPP based model with existing structure based methods and observed that our sequence based model is as good as structure based methods. Conclusion This study demonstrates that prediction of conformational B-cell epitope in an antigen is possible from is primary sequence. This study will be very useful in predicting conformational B-cell epitopes in antigens whose tertiary structures are not available. A web server CBTOPE has been developed for predicting B-cell epitope http://www.imtech.res.in/raghava/cbtope/.
0
Citation313
0
Save
Load More