DL
Derek Lundberg
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(82% Open Access)
Cited by:
5,938
h-index:
20
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defining the core Arabidopsis thaliana root microbiome

Derek Lundberg et al.Jul 31, 2012
Sequencing of the Arabidopsis thaliana root microbiome shows that its composition is strongly influenced by location, inside or outside the root, and by soil type. The association between a land plant and the soil microbes of the root microbiome is important for the plant's well-being. A deeper understanding of these microbial communities will offer opportunities to control plant growth and susceptibility to pathogens, particularly in sustainable agricultural regimes. Two groups, working separately but developing best-practice protocols in parallel, have characterized the root microbiota of the model plant Arabidopis thaliana. Working on two continents and with five different soil types, they reach similar general conclusions. The bacterial communities in each root compartment — the rhizosphere immediately surrounding the root and the endophytic compartment within the root — are most strongly influenced by soil type, and to a lesser degree by host genotype. In natural soils, Arabidopsis plants are preferentially colonized by Actinobacteria, Proteobacteria, Bacteroidetes and Chloroflexi species. And — an important point for future work — Arabidopsis root selectivity for soil bacteria under controlled environmental conditions mimics that of plants grown in a natural environment. Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1,2,3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plant–microbe interactions derived from complex soil communities.
0
Citation2,459
0
Save
0

Genomic features of bacterial adaptation to plants

Asaf Levy et al.Dec 15, 2017
Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe–microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant–microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering. Comparative genomic analysis of 3,837 bacterial genomes, including new sequences from 484 root-associated isolates, identifies plant-associated gene clusters and plant-mimicking domains.
0
Citation501
0
Save
0

The relationship between microbial population size and disease in the Arabidopsis thaliana phyllosphere

Talia Karasov et al.Nov 2, 2019
Abstract A central goal in microbiome research is to learn what distinguishes a healthy from a dysbiotic microbial community. Shifts in diversity and taxonomic composition are important indicators of dysbiosis, but a full understanding also requires knowledge of absolute microbial population sizes. In addition to the number of microbial cells, information on taxonomic composition can provide important insight into microbiome function and disease state. Here we use shotgun metagenomics to simultaneously assess microbiome composition and microbial load in the phyllosphere of wild populations of the plant Arabidopsis thalian a. We find that wild plants vary substantially in the load of colonizing microbes, and that high loads are typically associated with the proliferation of single taxa, with only a few putatively pathogenic taxa achieving high abundances in the field. Our results suggest (i) that the inside of a plant leaf is on average sparsely colonized with an estimated two bacterial genomes per plant genome and an order of magnitude fewer eukaryotic microbial genomes, and (ii) that higher levels of microbial cells often indicate successful colonization by pathogens. Lastly, our results show that load is a significant explanatory variable for loss of estimated Shannon diversity in phyllosphere microbiomes, implying that reduced diversity may be a significant predictor of microbial dysbiosis in a plant leaf.
0
Citation11
0
Save
0

Host-associated microbe PCR (hamPCR): accessing new biology through convenient measurement of both microbial load and community composition

Derek Lundberg et al.May 21, 2020
Abstract The ratio of microbial population size relative to the amount of host tissue, or “microbial load”, is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because conventional methods to determine load, such as serial dilution plating or quantitative PCR, add substantial experimental burden, they are only rarely paired with amplicon sequencing. Alternatively, whole metagenome sequencing of DNA contributed by host and microbes both reveals microbial community composition and enables determination of microbial load, but host DNA typically greatly outweighs microbial DNA, severely limiting the cost-effectiveness and scalability of this approach. We introduce host-associated microbe PCR (hamPCR), a robust amplicon sequencing strategy to quantify microbial load and describe interkingdom microbial community composition in a single, cost-effective library. We demonstrate its accuracy and flexibility across multiple host and microbe systems, including nematodes and major crops. We further present a technique that can be used, prior to sequencing, to optimize the host representation in a batch of libraries without loss of information. Because of its simplicity, and the fact that it provides an experimental solution to the well-known statistical challenges provided by compositional data, hamPCR will become a transformative approach throughout culture-independent microbiology.
0
Citation5
0
Save
Load More