SK
Snædís Kristmundsdóttir
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
785
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The sequences of 150,119 genomes in the UK Biobank

Bjarni Halldórsson et al.Jul 20, 2022
Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.
1
Citation276
0
Save
193
71

Ratatosk – Hybrid error correction of long reads enables accurate variant calling and assembly

Guillaume Holley et al.Jul 15, 2020
Abstract Motivation Long Read Sequencing (LRS) technologies are becoming essential to complement Short Read Sequencing (SRS) technologies for routine whole genome sequencing. LRS platforms produce DNA fragment reads, from 10 3 to 10 6 bases, allowing the resolution of numerous uncertainties left by SRS reads for genome reconstruction and analysis. In particular, LRS characterizes long and complex structural variants undetected by SRS due to short read length. Furthermore, assemblies produced with LRS reads are considerably more contiguous than with SRS while spanning previously inaccessible telomeric and centromeric regions. However, a major challenge to LRS reads adoption is their much higher error rate than SRS of up to 15%, introducing obstacles in downstream analysis pipelines. Results We present Ratatosk, a new error correction method for erroneous long reads based on a compacted and colored de Bruijn graph built from accurate short reads. Short and long reads color paths in the graph while vertices are annotated with candidate Single Nucleotide Polymorphisms. Long reads are subsequently anchored to the graph using exact and inexact fc-mer matches to find paths corresponding to corrected sequences. We demonstrate that Ratatosk can reduce the raw error rate of Oxford Nanopore reads 6-fold on average with a median error rate as low as 0.28%. Ratatosk corrected data maintain nearly 99% accurate SNP calls and increase indel call accuracy by up to about 40% compared to the raw data. An assembly of the Ashkenazi individual HG002 created from Ratatosk corrected Oxford Nanopore reads yields a contig N50 of 43.22 Mbp and less misassemblies than an assembly created from PacBio HiFi reads. Availability https://github.com/DecodeGenetics/Ratatosk Contact guillaume.holley@decode.is
71
Citation6
0
Save