NB
Naomi Baxter
Author with expertise in Diagnostic Methods for COVID-19 Detection
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Scalable, Easy-to-Deploy, Protocol for Cas13-Based Detection of SARS-CoV-2 Genetic Material

Jennifer Rauch et al.Apr 21, 2020
+10
S
E
J
The COVID-19 pandemic has created massive demand for widespread, distributed tools for detecting SARS-CoV-2 genetic material. The hurdles to scalable testing include reagent and instrument accessibility, availability of highly-trained personnel, and large upfront investment. Here we showcase an orthogonal pipeline we call CREST (Cas13-based, Rugged, Equitable, Scalable Testing) that addresses some of these hurdles. Specifically, CREST pairs commonplace and reliable biochemical methods (PCR) with low-cost instrumentation, without sacrificing detection sensitivity. By taking advantage of simple fluorescence visualizers, CREST allows for a binary interpretation of results. CREST may provide a point-of-care solution to increase the distribution of COVID-19 surveillance.### Competing Interest StatementThe authors have declared no competing interest.
1

Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission

Ryan Lach et al.Feb 3, 2022
+7
C
A
R
Abstract Wnt signal transduction is mediated by a protein assembly called the Destruction Complex (DC) made from scaffold proteins and kinases that are essential for transducing extracellular Wnt ligand concentrations to changes in nuclear β-catenin, the pathway’s transcriptional effector. Recently, DC scaffold proteins have been shown to undergo liquid-liquid phase separation in vivo and in vitro providing evidence for a mesoscale organization of the DC. However, the mesoscale organization of DC at endogenous expression levels and how that organization could play a role in β-catenin processing is unknown. Here we find that the native mesoscale structure is a dynamic biomolecular condensate nucleated by the centrosome. Through a combination of advanced microscopy, CRISPR-engineered custom fluorescent tags, finite element simulations, and optogenetic tools, that allow for independent manipulation of the biophysical parameters that drive condensate formation, we find that a function of DC nucleation by the centrosome is to drive efficient processing of β-catenin by co-localizing DC components to a single reaction hub. We demonstrate that simply increasing the concentration of a single DC kinase onto the centrosome controls β-catenin processing. This simple change in localization completely alters the fate of the Wnt-driven human embryonic stem cell differentiation to mesoderm. Our findings demonstrate the role of nucleators in dynamically controlling the activities of biomolecular condensates and suggest a tight integration between cell cycle progression and Wnt signal transduction.