NS
Nadejda Soudzilovskaia
Author with expertise in Biodiversity Conservation and Ecosystem Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
3,549
h-index:
36
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TRY – a global database of plant traits

Jens Kattge et al.Apr 26, 2011
+97
S
S
J
Abstract Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy‐in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log‐normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait‐based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
0
Paper
Citation2,332
0
Save
0

A global method for calculating plant CSR ecological strategies applied across biomes world‐wide

Simon Pierce et al.Aug 3, 2016
+37
B
D
S
Summary Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area ( LA ), leaf dry matter content ( LDMC ) and specific leaf area ( SLA ) (representing, respectively, interspecific variation in plant size and conservative vs . acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance ( RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA , LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS / CSR median; C:S:R = 43:42:15%), with CS ‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata ; R/ CR ‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
0
Paper
Citation398
0
Save
0

Which is a better predictor of plant traits: temperature or precipitation?

Angela Moles et al.May 15, 2014
+45
S
S
A
Abstract Question Are plant traits more closely correlated with mean annual temperature, or with mean annual precipitation? Location Global. Methods We quantified the strength of the relationships between temperature and precipitation and 21 plant traits from 447,961 species‐site combinations worldwide. We used meta‐analysis to provide an overall answer to our question. Results Mean annual temperature was significantly more strongly correlated with plant traits than was mean annual precipitation. Conclusions Our study provides support for some of the assumptions of classical vegetation theory, and points to many interesting directions for future research. The relatively low R 2 values for precipitation might reflect the weak link between mean annual precipitation and the availability of water to plants.
0
Paper
Citation389
0
Save
0

Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs

Grégoire Freschet et al.Nov 7, 2020
+33
L
C
G
Summary The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis‐based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.
0
Paper
Citation384
0
Save
13

Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities

Wen‐Yong Guo et al.Apr 23, 2020
+58
F
J
W
Abstract Although trees are key to ecosystem functioning, many forests and tree species across the globe face strong threats. Preserving areas of high biodiversity is a core priority for conservation; however, different dimensions of biodiversity and varied conservation targets make it difficult to respond effectively to this challenge. Here, we ( i ) identify priority areas for global tree conservation using comprehensive coverage of tree diversity based on taxonomy, phylogeny, and functional traits; and ( ii ) compare these findings to existing protected areas and global biodiversity conservation frameworks. We find that ca . 51% of the top-priority areas for tree biodiversity are located in current protected areas. The remaining half top-priority areas are subject to moderate to high human pressures, indicating conservation actions are needed to mitigate these human impacts. Our findings emphasize the effectiveness of using tree conservation priority areas for future global conservation planning.
13
Paper
Citation14
0
Save
1

Towards understanding diversity, endemicity and global change vulnerability of soil fungi

Leho Tedersoo et al.Mar 19, 2022
+103
M
M
L
Summary Fungi play pivotal roles in ecosystem functioning, but little is known about their global patterns of diversity, endemicity, vulnerability to global change drivers and conservation priority areas. We applied the high-resolution PacBio sequencing technique to identify fungi based on a long DNA marker that revealed a high proportion of hitherto unknown fungal taxa. We used a Global Soil Mycobiome consortium dataset to test relative performance of various sequencing depth standardization methods (calculation of residuals, exclusion of singletons, traditional and SRS rarefaction, use of Shannon index of diversity) to find optimal protocols for statistical analyses. Altogether, we used six global surveys to infer these patterns for soil-inhabiting fungi and their functional groups. We found that residuals of log-transformed richness (including singletons) against log-transformed sequencing depth yields significantly better model estimates compared with most other standardization methods. With respect to global patterns, fungal functional groups differed in the patterns of diversity, endemicity and vulnerability to main global change predictors. Unlike α-diversity, endemicity and global-change vulnerability of fungi and most functional groups were greatest in the tropics. Fungi are vulnerable mostly to drought, heat, and land cover change. Fungal conservation areas of highest priority include wetlands and moist tropical ecosystems.
1
Paper
Citation12
0
Save
71

Global Root Traits (GRooT) Database

Nathaly Guerrero‐Ramírez et al.May 19, 2020
+46
A
C
N
Abstract Motivation Trait data are fundamental to quantitatively describe plant form and function. Although root traits capture key dimensions related to plant responses to changing environmental conditions and effects on ecosystem processes, they have rarely been included in large-scale comparative studies and global models. For instance, root traits remain absent from nearly all studies that define the global spectrum of plant form and function. Thus, to overcome conceptual and methodological roadblocks preventing a widespread integration of root trait data into large-scale analyses we created the Global Root Trait (GRooT) Database. GRooT provides ready-to-use data by combining the expertise of root ecologists with data mobilization and curation. Specifically, we (i) determined a set of core root traits relevant to the description of plant form and function based on an assessment by experts, (ii) maximized species coverage through data standardization within and among traits, and (iii) implemented data quality checks. Main types of variables contained GRooT contains 114,222 trait records on 38 continuous root traits. Spatial location and grain Global coverage with data from arid, continental, polar, temperate, and tropical biomes. Data on root traits derived from experimental studies and field studies. Time period and grain Data recorded between 1911 and 2019 Major taxa and level of measurement GRooT includes root trait data for which taxonomic information is available. Trait records vary in their taxonomic resolution, with sub-species or varieties being the highest and genera the lowest taxonomic resolution available. It contains information for 184 sub-species or varieties, 6,214 species, 1,967 genera and 254 families. Due to variation in data sources, trait records in the database include both individual observations and mean values. Software format GRooT includes two csv file. A GitHub repository contains the csv files and a script in R to query the database.
71
Paper
Citation7
0
Save
12

Paleoclimate and current climate collectively shape the phylogenetic and functional diversity of trees worldwide

Wen‐Yong Guo et al.Jun 3, 2020
+58
B
J
W
Abstract Trees are of vital importance for ecosystem functioning and services at local to global scales, yet we still lack a detailed overview of the global patterns of tree diversity and the underlying drivers, particularly the imprint of paleoclimate. Here, we present the high-resolution (110 km) worldwide mapping of tree species richness, functional and phylogenetic diversities based on ∼7 million quality-assessed occurrences for 46,752 tree species (80.5% of the estimated total number of tree species), and subsequent assessments of the influence of paleo-climate legacies on these patterns. All three tree diversity dimensions exhibited the expected latitudinal decline. Contemporary climate emerged as the strongest driver of all diversity patterns, with Pleistocene and deeper-time (>10 7 years) paleoclimate as important co-determinants, and, notably, with past cold and drought stress being linked to reduced current diversity. These findings demonstrate that tree diversity is affected by paleoclimate millions of years back in time and highlight the potential for tree diversity losses from future climate change.
12
Paper
Citation5
0
Save
0

Global mycorrhizal plant distribution linked to terrestrial carbon stocks

Nadejda Soudzilovskaia et al.May 26, 2018
+7
C
P
N
Abstract Vegetation impacts on ecosystem functioning are mediated by mycorrhiza, a plant-fungal association formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the absence of information on mycorrhizal distribution. We present the first global high-resolution maps of vegetation biomass distribution among main types of mycorrhizal associations. Arbuscular, ecto-, ericoid and non-mycorrhizal vegetation store 241±15, 100±17, 7±1.8 and 29 ± 5.5 GT carbon in aboveground biomass, respectively. Soil carbon stocks in both topsoil and subsoil are positively related to the biomass fraction of ectomycorrhizal plants in the community, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential knock-on effects on terrestrial carbon stocks. Our work provides a benchmark for spatially explicit global quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycles. One Sentence Summary First maps of the global distribution of mycorrhizal plants reveal global losses of ectomycorrhizal vegetation, and quantitative links between mycorrhizal vegetation patterns and terrestrial carbon stocks.
0
Citation4
0
Save
3

Quaternary climate change explains global patterns of tree beta-diversity

Wenduo Xu et al.Nov 17, 2020
+58
J
W
W
Abstract Both historical and contemporary environmental conditions determine present biodiversity patterns, but their relative importance is not well understood. One way to disentangle their relative effects is to assess how different dimensions of beta-diversity relate to past climatic changes, i.e., taxonomic, phylogenetic and functional compositional dissimilarity, and their components generated by replacement of species, lineages and traits (turnover) and richness changes (nestedness). Here, we quantify global patterns of each of these aspects of beta-diversity among neighboring sites for angiosperm trees using the most extensive global database of tree species-distributions (43,635 species). We found that temperature change since the Last Glacial Maximum (LGM) was the major influence on both turnover and nestedness components of beta-diversity, with a negative correlation to turnover and a positive correlation to nestedness. Moreover, phylogenetic and functional nestedness was higher than expected from taxonomic beta-diversity in regions that experienced large temperature changes since the LGM. This pattern reflects relatively greater losses of phylogenetic and functional diversity in species-poor assemblages, possibly caused by phylogenetically and functionally selective species extinction and recolonization during glacial-interglacial oscillations. Our results send a strong warning that rapid anthropogenic climate change is likely to result in a long-lasting phylogenetic and functional compositional simplification, potentially impairing forest ecosystem functioning.
3
Paper
Citation3
0
Save
Load More