Data from millions of trees in thousands of locations are used to show that certain key traits affect competitive ability in predictable ways, and that there are trade-offs between traits that favour growth with and without competition. The properties of plants affect their physiology in predictable and consistent ways, but it is not clear if this can be extended to effects on ecological competitiveness. Georges Kunstler et al. assemble data from three million trees, 140,000 forest growth plots, and many vegetation types worldwide to show that certain key traits affect competitive ability in predictable ways, and that there are trade-offs between traits that favour growth with, and without, competition. Elsewhere in this issue of Nature, Sandra Díaz et al. analyse a comprehensive database mapping worldwide variation in six traits critical to growth, survival and reproduction of vascular plants and arrive at a detailed quantitative global picture of plant functional diversity. Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions1,2,3, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear4. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits—wood density, specific leaf area and maximum height—consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies5. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.