CR
Corie Ralston
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
427
h-index:
30
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

Michael Schoof et al.Nov 5, 2020
+112
Y
F
M
Nanobodies that neutralize Monoclonal antibodies that bind to the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) show therapeutic promise but must be produced in mammalian cells and need to be delivered intravenously. By contrast, single-domain antibodies called nanobodies can be produced in bacteria or yeast, and their stability may enable aerosol delivery. Two papers now report nanobodies that bind tightly to spike and efficiently neutralize SARS-CoV-2 in cells. Schoof et al. screened a yeast surface display of synthetic nanobodies and Xiang et al. screened anti-spike nanobodies produced by a llama. Both groups identified highly potent nanobodies that lock the spike protein in an inactive conformation. Multivalent constructs of selected nanobodies achieved even more potent neutralization. Science , this issue p. 1473 , p. 1479
11
Paper
Citation401
2
Save
851

An ultra-potent synthetic nanobody neutralizes SARS-CoV-2 by locking Spike into an inactive conformation

Michael Schoof et al.Aug 10, 2020
+54
M
U
M
Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.
851
Citation25
0
Save
0

Structure and interactions of HIV-1 gp41 CHR-NHR reverse hairpin constructs reveal molecular determinants of antiviral activity

Li He et al.Jun 12, 2024
+12
C
G
L
Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.
0
Citation1
0
Save
0

Evaluating the effects of a multi-modal prehabilitation service, on functional and patient reported outcomes prior to surgery for colorectal cancer

Hannah Ainsworth et al.Jun 1, 2024
+3
N
I
H
Purpose: Prehabilitation supports people living with cancer to prepare for treatment, by promoting healthy behaviours through exercise, nutrition and psychological interventions based on a person's needs (1). The aim of this evaluation was to determine the effects of a multimodal prehabilitation programme on functional and patient reported outcomes (PROs) for adults awaiting surgery for colorectal cancer.
0

Allosteric priming of E. coli CheY by the flagellar motor protein FliM

Paige Wheatley et al.Sep 25, 2019
+5
S
D
P
Phosphorylation of Escherichia coli CheY protein transduces chemoreceptor stimulation to a highly cooperative flagellar motor response. CheY binds to the N-terminal peptide of the FliM motor protein (FliMN). Constitutively active D13K-Y106W CheY has been an important tool for motor physiology. The crystal structures of CheY and CheY.FliMN with and without D13K-Y106W have shown FliMN bound CheY contains features of both active and inactive states. We used molecular dynamics (MD) simulations to characterize the CheY conformational landscape accessed by FliMN and D13K-Y106W. Mutual information measures identified the central features of the long-range CheY allosteric network between D13K at the D57 phosphorylation site and Y/W106 at the FliMN interface; namely the closure of the α4 - β4 hinge and inward rotation of Y/W106 with W58. We used hydroxy-radical foot-printing with mass spectroscopy (XFMS) to track the solvent accessibility of these and other sidechains. The solution XFMS oxidation rate correlated with the solvent-accessible area of the crystal structures. The protection of allosteric relay sidechains reported by XFMS confirmed the intermediate conformation of the native CheY.FliMN complex, the inactive state of free D13K-Y106W CheY and the MD-based network architecture. We extended the MD analysis to determine temporal coupling and energetics during activation. Coupled aromatic residue rotation was a graded rather than a binary switch with Y/W106 sidechain burial correlated with increased FliMN affinity. Activation entrained CheY fold stabilization to FliMN affinity. The CheY network could be partitioned into four dynamically coordinated community sectors. Residue substitutions mapped to sectors around D57 or the FliMN interface according to phenotype. FliMN increased sector size and interactions. These sectors fused between the substituted K13K-W106 residues to organize a tightly packed core and novel surfaces that may bind additional sites to explain the cooperative motor response. The community maps provide a more complete description of CheY priming than proposed thus far.### Competing Interest StatementThe authors have declared no competing interest.
0

Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells

Saad Raza et al.Mar 12, 2024
+7
L
D
S
Abstract Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo , the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo . Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
0

Electrochemical cofactor recycling of bacterial microcompartments

Markus Sutter et al.Jul 15, 2024
+11
J
L
M
Abstract Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B 12 ) reductase and, curiously, found it in many unrelated BMC types that do not employ B 12 cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-T SE assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.