KP
Kripa Patel
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
668
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0

Venkatakaushik Voleti et al.Sep 27, 2019
The limited per-pixel bandwidth of most microscopy methods requires compromises between field of view, sampling density and imaging speed. This limitation constrains studies involving complex motion or fast cellular signaling, and presents a major bottleneck for high-throughput structural imaging. Here, we combine high-speed intensified camera technology with a versatile, reconfigurable and dramatically improved Swept, Confocally Aligned Planar Excitation (SCAPE) microscope design that can achieve high-resolution volumetric imaging at over 300 volumes per second and over 1.2 GHz pixel rates. We demonstrate near-isotropic sampling in freely moving Caenorhabditis elegans, and analyze real-time blood flow and calcium dynamics in the beating zebrafish heart. The same system also permits high-throughput structural imaging of mounted, intact, cleared and expanded samples. SCAPE 2.0’s significantly lower photodamage compared to point-scanning techniques is also confirmed. Our results demonstrate that SCAPE 2.0 is a powerful, yet accessible imaging platform for myriad emerging high-speed dynamic and high-throughput volumetric microscopy applications. SCAPE 2.0 is a versatile imaging platform that enables real-time three-dimensional microscopy of cellular function and dynamic motion in living organisms at over 100 volumes per second with minimal photodamage, and high-throughput structural imaging in fixed, cleared and expanded samples.
0
Citation276
0
Save
57

Flygenvectors: The spatial and temporal structure of neural activity across the fly brain

Evan Schaffer et al.Sep 26, 2021
What are the spatial and temporal scales of brainwide neuronal activity, and how do activities at different scales interact? We used SCAPE microscopy to image a large fraction of the central brain of adult Drosophila melanogaster with high spatiotemporal resolution while flies engaged in a variety of behaviors, including running, grooming and flailing. This revealed neural representations of behavior on multiple spatial and temporal scales. The activity of most neurons across the brain correlated (or, in some cases, anticorrelated) with running and flailing over timescales that ranged from seconds to almost a minute. Grooming elicited a much weaker global response. Although these behaviors accounted for a large fraction of neural activity, residual activity not directly correlated with behavior was high dimensional. Many dimensions of the residual activity reflect the activity of small clusters of spatially organized neurons that may correspond to genetically defined cell types. These clusters participate in the global dynamics, indicating that neural activity reflects a combination of local and broadly distributed components. This suggests that microcircuits with highly specified functions are provided with knowledge of the larger context in which they operate, conferring a useful balance of specificity and flexibility.
57
Paper
Citation22
0
Save
0

Glioma-induced alterations in neuronal activity and neurovascular coupling during disease progression

Mary Montgomery et al.Sep 10, 2019
Abstract Diffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we followed glioma progression in awake Thy1-GCaMP6f mice using in-vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics. The bilateral synchrony of spontaneous neuronal activity in glioma-infiltrated cortex gradually decreased, while neurovascular coupling was also progressively disrupted compared to uninvolved cortex. Over time, mice developed diverse patterns of high amplitude discharges and eventually generalized seizures that begin at the infiltrative margin of the tumors. Interictal and seizure events exhibited positive neurovascular coupling in uninfiltrated cortex, however glioma-infiltrated regions exhibited inverted hemodynamic responses driving seizure-evoked hypoxia. These results reveal a landscape of complex physiological interactions occurring during glioma progression and present new opportunities for exploring new biomarkers and therapeutic targets. Highlights - Glioma disrupts neural synchrony between bilateral cortical regions. - WFOM reveals frequent interictal discharges and seizures during glioma progression. - Tumor development is accompanied by local changes in neurovascular coupling. - Altered neurovascular coupling drives hypoperfusion of the tumor during seizures.
0
Citation3
0
Save
55

Neuronal birthdate reveals topography in a vestibular brainstem circuit for gaze stabilization

Dena Goldblatt et al.Oct 22, 2022
ABSTRACT Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Lastly, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly-conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.