JD
Jörg Drenkow
Author with expertise in RNA Sequencing Data Analysis
Cold Spring Harbor Laboratory, Pacific Biosciences (United States), Leipzig University
+ 5 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
1,523
h-index:
26
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A comparative encyclopedia of DNA elements in the mouse genome

Feng Yue et al.Mar 10, 2024
+134
A
Y
F
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
1
Paper
13

Pan-genome Analysis in Sorghum Highlights the Extent of Genomic Variation and Sugarcane Aphid Resistance Genes

Wang Bo et al.Oct 24, 2023
+15
K
Y
W
ABSTRACT Sorghum bicolor , one of the most important grass crops around the world, harbors a high degree of genetic diversity. We constructed chromosome-level genome assemblies for two important sorghum inbred lines, Tx2783 and RTx436. The final high-quality reference assemblies consist of 19 and 18 scaffolds, respectively, with contig N50 values of 25.6 and 20.3 Mb. Genes were annotated using evidence-based and de novo gene predictors, and RAMPAGE data demonstrate that transcription start sites were effectively captured. Together with other public sorghum genomes, BTx623, RTx430, and Rio, extensive structural variations (SVs) of various sizes were characterized using Tx2783 as a reference. Genome-wide scanning for disease resistance (R) genes revealed high levels of diversity among these five sorghum accessions. To characterize sugarcane aphid (SCA) resistance in Tx2783, we mapped the resistance region on chromosome 6 using a recombinant inbred line (RIL) population and found a SV of 191 kb containing a cluster of R genes in Tx2783. Using Tx2783 as a backbone, along with the SVs, we constructed a pan-genome to support alignment of resequencing data from 62 sorghum accessions, and then identified core and dispensable genes using this population. This study provides the first overview of the extent of genomic structural variations and R genes in the sorghum population, and reveals potential targets for breeding of SCA resistance.
13
Paper
Citation19
0
Save
19

The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models

Joel Rozowsky et al.Oct 24, 2023
+96
Y
J
J
ABSTRACT Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of personal epigenomes, for ∼25 tissues and >10 assays in four donors (>1500 open-access functional genomic and proteomic datasets, in total). Each dataset is mapped to a matched, diploid personal genome, which has long-read phasing and structural variants. The mappings enable us to identify >1 million loci with allele-specific behavior. These loci exhibit coordinated epigenetic activity along haplotypes and less conservation than matched, non-allele-specific loci, in a fashion broadly paralleling tissue-specificity. Surprisingly, they can be accurately modelled just based on local nucleotide-sequence context. Combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci and enables models for transferring known eQTLs to difficult-to-profile tissues. Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.
19
Citation9
0
Save
0

Dynamics of microRNA expression during mouse prenatal development

Sorena Rahmanian et al.May 7, 2020
+18
A
R
S
ABSTRACT MicroRNAs (miRNAs) play a critical role as post-transcriptional regulators of gene expression. The ENCODE project profiled the expression of miRNAs in a comprehensive set of tissues during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct tissue and developmental stage specific miRNA expression clusters, with an overall pattern of increasing tissue specific expression as development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by tissue types rather than by species. An analysis of messenger RNA gene expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the tissue where these microRNAs are expressed during embryonic development. Our results provide the most comprehensive timecourse of miRNA expression as an integrated part of the ENCODE reference dataset for mouse embryonic development.
0
Citation3
0
Save
0

A limited set of transcriptional programs define major cell types

Alessandra Breschi et al.May 7, 2020
+15
V
M
A
We have produced RNA sequencing data for a number of primary cells from different locations in the human body. The clustering of these primary cells reveals that most cells in the human body share a few broad transcriptional programs, which define five major cell types: epithelial, endothelial, mesenchymal, neural and blood cells. These act as basic components of many tissues and organs. Based on gene expression, these cell types redefine the basic histological types by which tissues have been traditionally classified. We identified genes whose expression is specific to these cell types, and from these genes, we estimated the contribution of the major cell types to the composition of human tissues. We found this cellular composition to be a characteristic signature of tissues, and to reflect tissue morphological heterogeneity and histology. We identified changes in cellular composition in different tissues associated with age and sex and found that departures from the normal cellular composition correlate with histological phenotypes associated to disease.One Sentence Summary A few broad transcriptional programs define the major cell types underlying the histology of human tissues and organs.
0

Enhanced Transcriptome Maps from Multiple Mouse Tissues Reveal Evolutionary Constraint in Gene Expression for Thousands of Genes

Dmitri Pervouchine et al.May 7, 2020
+20
A
S
D
We characterized by RNA-seq the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles obtained in human cell lines reveals substantial conservation of transcriptional programs, and uncovers a distinct class of genes with levels of expression across cell types and species, that have been constrained early in vertebrate evolution. This core set of genes capture a substantial and constant fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but it is associated with strong and conserved epigenetic marking, as well as to a characteristic post-transcriptional regulatory program in which sub-cellular localization and alternative splicing play comparatively large roles.
0

Management, Analyses, and Distribution of the MaizeCODE Data on the Cloud

Liya Wang et al.May 7, 2020
+18
M
Z
L
MaizeCODE is a project aimed at identifying and analyzing functional elements in the maize genome. In its initial phase, MaizeCODE assayed up to five tissues from four maize strains (B73, NC350, W22, TIL11) by RNA-Seq, Chip-Seq, RAMPAGE, and small RNA sequencing. To facilitate reproducible science and provide both human and machine access to the MaizeCODE data, we enhanced SciApps, a cloud-based portal, for analysis and distribution of both raw data and analysis results. Based on the SciApps workflow platform, we generated new components to support the complete cycle of MaizeCODE data management. These include publicly accessible scientific workflows for the reproducible and shareable analysis of various functional data, a RESTful API for batch processing and distribution of data and metadata, a searchable data page that lists each MaizeCODE experiment as a reproducible workflow, and integrated JBrowse genome browser tracks linked with workflows and metadata. The SciApps portal is a flexible platform that allows the integration of new analysis tools, workflows, and genomic data from multiple projects. Through metadata and a ready-to-compute cloud-based platform, the portal experience improves access to the MaizeCODE data and facilitates its analysis.
0

MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication

Jonathan Cahn et al.Feb 29, 2024
+17
J
M
J
Abstract Modern maize was domesticated from Teosinte parviglumis , with subsequent introgressions from Teosinte mexicana , yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified several transcription factors involved in the development of these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Integrated analysis of these datasets resulted in the identification of a comprehensive set of regulatory regions in each inbred, and notably of distal enhancers which were differentiated from gene bodies by their lack of H3K4me1. Many of these distal enhancers expressed non- coding enhancer RNAs bi-directionally, reminiscent of “super enhancers” in animal genomes. We show that pollen grains are the most differentiated tissue at the transcriptomic level, and share features with endosperm that may be related to McClintock’s chromosome breakage- fusion-bridge cycle. Conversely, ears have the least conservation between maize and teosinte, both in gene expression and within regulatory regions, reflecting conspicuous morphological differences selected during domestication. The identification of molecular signatures of domestication in transcriptional regulatory regions provides a framework for directed breeding strategies in maize.