DG
Danielle Grotjahn
Author with expertise in Cryo-Electron Microscopy Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
36
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
38

A surface morphometrics toolkit to quantify organellar membrane ultrastructure using cryo-electron tomography

Benjamin Barad et al.Jan 24, 2022
ABSTRACT Cellular cryo-electron tomography (cryo-ET) enables 3-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semi-automated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics toolkit. This toolkit allows detailed mapping of spacing, curvature, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our toolkit, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvature of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our toolkit offers opportunities for quantifying changes in organellar architecture on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
38
Citation16
0
Save
0

Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility

Danielle Grotjahn et al.Aug 31, 2017
Abstract A key player in the intracellular trafficking network is cytoplasmic dynein, a protein complex that transports molecular cargo along microtubule tracks. It has been shown that vertebrate dynein’s movement becomes strikingly enhanced upon interacting with a cofactor named dynactin and one of several cargo-adapters, such as BicaudalD2. However, the mechanisms responsible for this increase in transport efficiency are not well understood, largely due to a lack of structural information. We used cryo-electron tomography to visualize the first 3-dimensional structure of the intact dynein-dynactin complex bound to microtubules. Our structure reveals that the dynactin-cargo-adapter complex recruits and binds to two dimeric cytoplasmic dyneins. Interestingly, the dynein motor organization closely resembles that of axonemal dynein, suggesting that cytoplasmic dynein and axonemal dyneins may utilize similar mechanisms to coordinate multiple motors. We propose that grouping dyneins onto a single dynactin scaffold promotes collective force production as well as unidirectional processive motility. These findings provide a structural platform that facilitates a deeper biochemical and biophysical understanding of dynein regulation and cellular transport.
0
Citation5
0
Save
16

Endosomal removal and disposal of dysfunctional, immunostimulatory mitochondrial DNA

Laura Newman et al.Oct 12, 2022
Maternally inherited mitochondrial DNA (mtDNA) encodes essential subunits of the mitochondrial oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation 1 . This function of mtDNA contributes to antiviral resistance, but unfortunately also causes pathogenic inflammation in many disease contexts 2 . Cells experiencing mtDNA stress due to depletion of the mtDNA-packaging protein, Transcription Factor A, Mitochondrial (TFAM), or HSV-1 infection exhibit elongated mitochondria, mtDNA depletion, enlargement of nucleoids (mtDNA-protein complexes), and activation of cGAS/STING innate immune signaling via mtDNA released into the cytoplasm 3 . However, the relationships between altered mitochondrial dynamics and mtDNA-mediated activation of the cGAS-STING pathway remain unclear. Here, we show that entire enlarged nucleoids are released from mitochondria that remain bound to TFAM and colocalize with cGAS. These nucleoids arise at sites of mtDNA replication due to a block in mitochondrial fission at a stage when endoplasmic reticulum (ER) actin polymerization would normally commence, which we propose is a fission checkpoint to ensure that mtDNA has completed replication and is competent for segregation into daughter mitochondria. Released nucleoids also colocalize with the early endosomal marker RAB5 as well as the late endosomal marker RAB7 in TFAM-deficient cells and in response to mtDNA stress caused by the HSV-1 UL12.5 protein. Loss of RAB7 increases interferon stimulated gene (ISG) expression. Thus, we propose that defects in mtDNA replication and/or segregation enact a late mitochondrial fission checkpoint that, if persistent, leads to selective removal of dysfunctional nucleoids by a mitochondrial-endosomal pathway. Early steps in this pathway are prone to mtDNA release and cGAS-STING activation, but the immunostimulatory mtDNA is ultimately disposed of through a mechanism involving RAB7-containing late endosomes to prevent excessive innate immune signaling. This mtDNA quality control pathway might represent a therapeutic target to prevent mtDNA-mediated inflammation and associated pathology.
16
Citation5
0
Save
33

PERK Signaling Promotes Mitochondrial Elongation By Remodeling Membrane Phosphatidic Acid

Valerie Perea et al.Feb 23, 2022
SUMMARY Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are linked in the onset and pathogenesis of numerous diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria during ER stress. The PERK signaling arm of the unfolded protein response (UPR) has emerged as a prominent ER stress-responsive signaling pathway that regulates diverse aspects of mitochondrial biology. Here, we show that PERK activity also promotes adaptive remodeling of mitochondrial membrane phosphatidic acid (PA) to induce protective mitochondrial elongation during ER stress. We find that PERK activity is required for ER stress-dependent increases in both cellular PA and YME1L-dependent degradation of the intramitochondrial PA transporter PRELID1. Together, these processes lead to the accumulation of PA on the outer mitochondrial membrane where it induces mitochondrial elongation by inhibiting mitochondrial fission. Our results establish a new role for PERK in the adaptive remodeling of mitochondrial phospholipids and demonstrate that PERK-dependent PA regulation functions to adapt organellar shape in response to ER stress.
33
Citation3
0
Save
115

A case for glycerol as an acceptable additive for single particle cryoEM samples

Benjamin Basanta et al.Sep 11, 2021
Abstract Buffer composition and sample preparation guidelines for cryo-electron microscopy are geared toward maximizing imaging contrast and reducing electron beam-induced motion. These pursuits often involve the minimization or complete removal of additives that are commonly used to facilitate proper protein folding and minimize aggregation. Among these admonished additives is glycerol, a widely used osmolyte that aids protein stability. In this work, we show that inclusion of glycerol does not preclude high-resolution structure determination by cryoEM, as demonstrated by a ∼2.3 Å reconstruction of mouse apoferritin (∼500 kDa) and a ∼3.3 Å reconstruction of rabbit muscle aldolase (∼160 kDa) in presence of 20% v/v glycerol. While we found that generating thin ice that is amenable for high-resolution imaging requires long blot times, the addition of glycerol did not result in increased beam-induced motion nor an inability to pick particles. Overall, our findings indicate glycerol should not be discounted as a cryoEM sample buffer additive, particularly for large, fragile complexes that are prone to disassembly or aggregation upon its removal.
115
Paper
Citation1
0
Save
0

Multi-Modal Large Language Model Enables Protein Function Prediction

Mingjia Huo et al.Aug 20, 2024
Abstract Predicting the functions of proteins can greatly accelerate biological discovery and applications, where deep learning methods have recently shown great potential. However, these methods predominantly predict protein functions as discrete categories, which fails to capture the nuanced and complex nature of protein functions. Furthermore, existing methods require the development of separate models for each prediction task, a process that can be both resource-heavy and time-consuming. Here, we present ProteinChat, a versatile, multi-modal large language model that takes a protein’s amino acid sequence as input and generates comprehensive narratives describing its function. ProteinChat is trained using over 1,500,000 (protein, prompt, answer) triplets curated from the Swiss-Prot dataset, covering diverse functions. This novel model can universally predict a wide range of protein functions, all within a single, unified framework. Furthermore, ProteinChat supports interactive dialogues with human users, allowing for iterative refinement of predictions and deeper exploration of protein functions. Our experimental results, evaluated through both human expert assessment and automated metrics, demonstrate that ProteinChat outperforms general-purpose LLMs like GPT-4, one of the flagship LLMs, by over ten-fold. In addition, ProteinChat exceeds or matches the performance of task-specific prediction models.
0

Secreted antigen A peptidoglycan hydrolase is essential for Enterococcus faecium cell separation and priming of immune checkpoint inhibitor cancer therapy

Steven Klupt et al.Jan 1, 2023
Enterococcus faecium is a microbiota species in humans that can modulate host immunity, but has also acquired antibiotic resistance and is a major cause of hospital-associated infections. Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity and immune checkpoint inhibitor antitumor activity. However, the essential functions of SagA in E. faecium were unknown. Here we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, plasmid-based expression of SagA, but not its catalytically-inactive mutant, restored ΔsagA growth, production of active muropeptides and NOD2 activation. SagA is therefore essential for E. faecium growth, stress resistance and activation of host immunity.
0

A guided approach for subtomogram averaging of challenging macromolecular assemblies

Danielle Grotjahn et al.Feb 2, 2020
Cryo-electron tomography is a powerful biophysical technique enabling three-dimensional visualization of complex biological systems. Macromolecular targets of interest identified within cryo-tomograms can be computationally extracted, aligned, and averaged to produce a better-resolved structure through a process called subtomogram averaging (STA). However, accurate alignment of macromolecular machines that exhibit extreme structural heterogeneity and conformational flexibility remains a significant challenge with conventional STA approaches. To expand the applicability of STA to a broader range of pleomorphic complexes, we developed a user-guided, focused refinement approach that can be incorporated into the standard STA workflow to facilitate the robust alignment of particularly challenging samples. We demonstrate that it is possible to align visually recognizable portions of multi-subunit complexes by providing a priori information regarding their relative orientations within cryo-tomograms, and describe how this strategy was applied to successfully elucidate the first three-dimensional structure of the dynein-dynactin motor protein complex bound to microtubules. Our approach expands the application of STA for solving a more diverse range of heterogeneous biological structures, and establishes a conceptual framework for the development of automated strategies to deconvolve the complexity of crowded cellular environments and improve in situ structure determination technologies.
0

Reentrant DNA shells tune polyphosphate condensate size

Ravi Chawla et al.Jan 1, 2023
The ancient, inorganic biopolymer polyphosphate (polyP) occurs in all three domains of life and affects myriad cellular processes. An intriguing feature of polyP is its frequent proximity to chromatin, and in the case of many bacteria, its occurrence in the form of magnesium-enriched condensates embedded in the nucleoid, particularly in response to stress. The physical basis of the interaction between polyP and DNA, two fundamental anionic biopolymers, and the resulting effects on the organization of both the nucleoid and polyP condensates remain poorly understood. Given the essential role of magnesium ions in the coordination of polymeric phosphate species, we hypothesized that a minimal system of polyP, magnesium ions, and DNA (polyP-Mg2+-DNA) would capture key features of the interplay between the condensates and bacterial chromatin. We find that DNA can profoundly affect polyP-Mg2+ coacervation even at concentrations several orders of magnitude lower than found in the cell. The DNA forms shells around polyP-Mg2+ condensates and these shells show reentrant behavior, primarily forming in the concentration range close to polyP-Mg2+ charge neutralization. This surface association tunes both condensate size and DNA morphology in a manner dependent on DNA properties, including length and concentration. Our work identifies three components that could form the basis of a central and tunable interaction hub that interfaces with cellular interactors. These studies will inform future efforts to understand the basis of polyP granule composition and consolidation, as well as the potential capacity of these mesoscale assemblies to remodel chromatin in response to diverse stressors at different length and time scales.
Load More