Abstract Multivalent presentation of ligands often enhances receptor activation and downstream signaling. DNA origami offers precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we introduce a “square block” DNA origami platform to explore the importance of spacing of CpG oligonucleotides, which engage Toll-like receptors and thereby act as danger signals for dendritic cells. Through in vitro cell-culture studies and in vivo tumor-treatment models, we demonstrate that square blocks induce Th1 immune polarization when CpG is spaced at 3.5 nm. We observe that this DNA origami vaccine enhances DC activation, antigen cross-presentation, CD8 T cell activation, Th1-polarized CD4 activation and NK cell activation. The vaccine also synergizes effectively with anti-PD-L1 for improved cancer immunotherapy in melanoma and lymphoma models and induces long-term T cell memory. Our results suggest that DNA origami may serve as an advanced vaccine platform for controlling adjuvant spacing and co-delivering antigens. One Sentence Summary This study developed a DNA origami-based cancer vaccine (DoriVac) that co-delivers antigen and CpG immune adjuvant with an optimal nanospacing for Th1 immune polarization.