WX
Wenming Xiao
Author with expertise in Lymphoid Neoplasms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
27
(85% Open Access)
Cited by:
10,914
h-index:
40
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma

R. Davis et al.Jan 1, 2010
A link between B-cell-receptor (BCR) signalling and human B-cell lymphomas has been inferred from the study of immunoglobulin genes in human lymphomas and from work on mouse models, but more evidence is required to confirm an oncogenic role. New work from Davis et al. shows that chronic activation of BCR signalling is required for the survival of the ABC DLBCL subset of B-cell lymphomas. Somatic mutations in CD29A and CD79B found in these lymphomas appear to contribute to BCR activation. The role of B-cell-receptor (BCR) signalling in human B cell lymphomas has been a long-standing question, with genetic and functional evidence for its oncogenic role in human lymphomas lacking. Here, a form of 'chronic active' BCR signalling that is required for cell survival in the activated B-cell-like subtype of diffuse large B-cell lymphoma is described and analysed, with potential implications for future therapeutic strategies. A role for B-cell-receptor (BCR) signalling in lymphomagenesis has been inferred by studying immunoglobulin genes in human lymphomas1,2 and by engineering mouse models3, but genetic and functional evidence for its oncogenic role in human lymphomas is needed. Here we describe a form of ‘chronic active’ BCR signalling that is required for cell survival in the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). The signalling adaptor CARD11 is required for constitutive NF-κB pathway activity and survival in ABC DLBCL4. Roughly 10% of ABC DLBCLs have mutant CARD11 isoforms that activate NF-κB5, but the mechanism that engages wild-type CARD11 in other ABC DLBCLs was unknown. An RNA interference genetic screen revealed that a BCR signalling component, Bruton’s tyrosine kinase, is essential for the survival of ABC DLBCLs with wild-type CARD11. In addition, knockdown of proximal BCR subunits (IgM, Ig-κ, CD79A and CD79B) killed ABC DLBCLs with wild-type CARD11 but not other lymphomas. The BCRs in these ABC DLBCLs formed prominent clusters in the plasma membrane with low diffusion, similarly to BCRs in antigen-stimulated normal B cells. Somatic mutations affecting the immunoreceptor tyrosine-based activation motif (ITAM) signalling modules6 of CD79B and CD79A were detected frequently in ABC DLBCL biopsy samples but rarely in other DLBCLs and never in Burkitt’s lymphoma or mucosa-associated lymphoid tissue lymphoma. In 18% of ABC DLBCLs, one functionally critical residue of CD79B, the first ITAM tyrosine, was mutated. These mutations increased surface BCR expression and attenuated Lyn kinase, a feedback inhibitor of BCR signalling. These findings establish chronic active BCR signalling as a new pathogenetic mechanism in ABC DLBCL, suggesting several therapeutic strategies.
0
Citation1,493
0
Save
0

Oncogenically active MYD88 mutations in human lymphoma

Vu Ngo et al.Dec 22, 2010
RNA interference screening and high-throughput RNA resequencing have been used to reveal oncogenic mutations in the signalling adapter MYD88 in human lymphomas. One amino acid substitution, L265P, was found in 29% of biopsies from patients with the activated B-cell-like subtype of diffuse large B-cell lymphoma. The same mutation was observed with lower frequency in mucosa-associated lymphoid tissue lymphomas. MYD88 mediates signalling by Toll-like receptors, and the mutations, most of which affect the same amino acid, were shown to activate the pathway and promote cancer cell survival. This study finds frequent mutations in MYD88 in the activated B-cell-like subtype of diffuse large B-cell lymphoma and, with lower frequency, in mucosa-associated lymphoid tissue lymphomas. MYD88 mediates signalling by Toll-like receptors, and the mutations, most of which affect the same amino acid, are shown to activate the pathway and promote cancer cell survival. The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.
0
Citation1,371
0
Save
0

Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways

Georg Lenz et al.Sep 3, 2008
Gene-expression profiling has been used to define 3 molecular subtypes of diffuse large B-cell lymphoma (DLBCL), termed germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). To investigate whether these DLBCL subtypes arise by distinct pathogenetic mechanisms, we analyzed 203 DLBCL biopsy samples by high-resolution, genome-wide copy number analysis coupled with gene-expression profiling. Of 272 recurrent chromosomal aberrations that were associated with gene-expression alterations, 30 were used differentially by the DLBCL subtypes ( P < 0.006). An amplicon on chromosome 19 was detected in 26% of ABC DLBCLs but in only 3% of GCB DLBCLs and PMBLs. A highly up-regulated gene in this amplicon was SPIB , which encodes an ETS family transcription factor. Knockdown of SPIB by RNA interference was toxic to ABC DLBCL cell lines but not to GCB DLBCL, PMBL, or myeloma cell lines, strongly implicating SPIB as an oncogene involved in the pathogenesis of ABC DLBCL. Deletion of the INK4a / ARF tumor suppressor locus and trisomy 3 also occurred almost exclusively in ABC DLBCLs and was associated with inferior outcome within this subtype. FOXP1 emerged as a potential oncogene in ABC DLBCL that was up-regulated by trisomy 3 and by more focal high-level amplifications. In GCB DLBCL, amplification of the oncogenic mir-17–92 microRNA cluster and deletion of the tumor suppressor PTEN were recurrent, but these events did not occur in ABC DLBCL. Together, these data provide genetic evidence that the DLBCL subtypes are distinct diseases that use different oncogenic pathways.
0
Citation935
0
Save
0

Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics

Roland Schmitz et al.Aug 10, 2012
RNA sequencing of Burkitt lymphoma tumours allows identification of mutations affecting the transcription factor TCF3, its negative regulator ID3 and the cell cycle regulator CCND3; these pathways reveal new targets for potential therapeutic intervention. Although intensive chemotherapy can cure Burkitt’s lymphoma, the associated toxicity means that this treatment is not suitable for more vulnerable patients, such as the elderly or people in developing countries with the endemic form of the disease. This study identifies mutations of the transcription factor TCF3 or its negative regulator ID3 in a high percentage of sporadic cases of Burkitt’s lymphoma and suggests several novel drug targets, including PI(3) kinase and its downstream pathways, B-cell-receptor signalling and cyclin D3/CDK6. Burkitt’s lymphoma (BL) can often be cured by intensive chemotherapy, but the toxicity of such therapy precludes its use in the elderly and in patients with endemic BL in developing countries, necessitating new strategies1. The normal germinal centre B cell is the presumed cell of origin for both BL and diffuse large B-cell lymphoma (DLBCL), yet gene expression analysis suggests that these malignancies may use different oncogenic pathways2. BL is subdivided into a sporadic subtype that is diagnosed in developed countries, the Epstein–Barr-virus-associated endemic subtype, and an HIV-associated subtype, but it is unclear whether these subtypes use similar or divergent oncogenic mechanisms. Here we used high-throughput RNA sequencing and RNA interference screening to discover essential regulatory pathways in BL that cooperate with MYC, the defining oncogene of this cancer. In 70% of sporadic BL cases, mutations affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 dependency. TCF3 activated the pro-survival phosphatidylinositol-3-OH kinase pathway in BL, in part by augmenting tonic B-cell receptor signalling. In 38% of sporadic BL cases, oncogenic CCND3 mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. These findings suggest opportunities to improve therapy for patients with BL.
0
Citation833
0
Save
0

IRF4 addiction in multiple myeloma

Arthur Shaffer et al.Jun 22, 2008
An RNA interference scan for genes linked to the proliferation of myeloma cell lines as possible drug targets has identified the transcription factor factor IRF4, needed for lymphocyte activation and plasma cell differentiation in normal cells, as a master regulator of multiple myeloma. Strikingly, myeloma cells are completely dependent on IRF4, despite that fact that most do not harbour mutations, translocations or amplifications of the IRF4 locus. In cancer cells, IRF4 controls a different network of genes — including the MYC oncogene — than in normal plasma cells or activated B cells. IRF4 dependency in myeloma is an example of 'non-oncogene addiction', where cancer cells depend on a normal cellular protein for proliferation and/or survival. The transcription factor IRF4, required for lymphocyte activation and plasma cell differentiation, is shown here to be a master regulator of multiple myeloma. It controls a different network of genes in the cancer than it does in normal plasma cells or activated B cells. The transcription factor IRF4 (interferon regulatory factor 4) is required during an immune response for lymphocyte activation and the generation of immunoglobulin-secreting plasma cells1,2,3. Multiple myeloma, a malignancy of plasma cells, has a complex molecular aetiology with several subgroups defined by gene expression profiling and recurrent chromosomal translocations4,5. Moreover, the malignant clone can sustain multiple oncogenic lesions, accumulating genetic damage as the disease progresses6,7. Current therapies for myeloma can extend survival but are not curative8,9. Hence, new therapeutic strategies are needed that target molecular pathways shared by all subtypes of myeloma. Here we show, using a loss-of-function, RNA-interference-based genetic screen, that IRF4 inhibition is toxic to myeloma cell lines, regardless of transforming oncogenic mechanism. Gene expression profiling and genome-wide chromatin immunoprecipitation analysis uncovered an extensive network of IRF4 target genes and identified MYC as a direct target of IRF4 in activated B cells and myeloma. Unexpectedly, IRF4 was itself a direct target of MYC transactivation, generating an autoregulatory circuit in myeloma cells. Although IRF4 is not genetically altered in most myelomas, they are nonetheless addicted to an aberrant IRF4 regulatory network that fuses the gene expression programmes of normal plasma cells and activated B cells.
0
Citation657
0
Save
0

Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells

Can Küçük et al.Jan 14, 2015
Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy. NK-cell and γδ-T cell lymphoma share clinic-pathological features; however the driving mutations are largely unknown. Here the authors, using a combination of RNA-Seq analysis, targeted re-sequencing and functional analysis, identify frequent activating mutations in STAT3 and STAT5Bthat may be driver mutations in these diseases.
0
Citation355
0
Save
Load More