SN
Samuel Neymotin
Author with expertise in Neuronal Oscillations in Cortical Networks
Nathan Kline Institute for Psychiatric Research, New York University, John Brown University
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(54% Open Access)
Cited by:
32
h-index:
25
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiscale dynamics and information flow in a data-driven model of the primary motor cortex microcircuit

Salvador Durá-Bernal et al.May 6, 2020
+2
B
S
S
Abstract We developed a biophysically detailed multiscale model of mouse primary motor cortex (M1) with over 10,000 neurons and 35 million synapses. We focused on intratelencephalic (IT) and pyramidal-tract (PT) neurons of layer 5 (L5), which were modeled at high multicompartment resolution. Wiring densities were based on prior detailed measures from mouse slice, and depended on cell class and cortical depth at sublaminar resolution. Prominent phase-amplitude-coupled delta and gamma activity emerged from the network. Spectral Granger causality analysis revealed the dynamics of information flow through populations at different frequencies. Stimulation of motor vs sensory long-range inputs to M1 demonstrated distinct intra- and inter-laminar dynamics and PT output. Manipulating PT I h altered PT activity, supporting the hypothesis that I h neuromodulation is involved in translating motor planning into execution. Our model sheds light on the multiscale dynamics of cell-type-specific M1 circuits and how connectivity relates to dynamics.
1

Data-driven multiscale model of macaque auditory thalamocortical circuits reproduces in vivo dynamics

Salvador Durá-Bernal et al.Aug 10, 2022
+6
A
E
S
Abstract We developed a biophysically-detailed model of the macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB) and thalamic reticular nuclei (TRN), using the NEURON simulator and NetPyNE multiscale modeling tool. We simulated A1 as a cortical column with a depth of 2000 μm and 200 μm diameter, containing over 12k neurons and 30M synapses. Neuron densities, laminar locations, classes, morphology and biophysics, and connectivity at the long-range, local and dendritic scale were derived from published experimental data. The A1 model included 6 cortical layers and multiple populations of neurons consisting of 4 excitatory and 4 inhibitory types, and was reciprocally connected to the thalamus (MGB and TRN), mimicking anatomical connectivity. MGB included core and matrix thalamocortical neurons with layer-specific projection patterns to A1, and thalamic interneurons projecting locally. Auditory stimulus-related inputs to the MGB were simulated using phenomenological models of the cochlear/auditory nerve and the inferior colliculus. The model generated cell type and layer-specific firing rates consistent with experimentally observed ranges, and accurately simulated the corresponding local field potentials (LFPs), current source density (CSD), and electroencephalogram (EEG) signals. Laminar CSD patterns during spontaneous activity, and in response to speech input, were similar to those recorded experimentally. Physiological oscillations emerged spontaneously across frequency bands without external rhythmic inputs and were comparable to those recorded in vivo. We used the model to unravel the contributions from distinct cell type and layer-specific neuronal populations to oscillation events detected in CSD, and explored how these relate to the population firing patterns. Overall, the computational model provides a quantitative theoretical framework to integrate and interpret a wide range of experimental data in auditory circuits. It also constitutes a powerful tool to evaluate hypotheses and make predictions about the cellular and network mechanisms underlying common experimental measurements, including MUA, LFP and EEG signals.
33

Laminar dynamics of beta bursts in human motor cortex

James Bonaiuto et al.Oct 24, 2023
+3
S
S
J
Abstract Modulation of motor cortical activity in the beta frequency range is one of the strongest and most studied movement-related neural signals. At the single trial level, beta band activity is often characterized by transient bursting events rather than slowly modulating oscillations, suggesting a more rapid, information-encoding functional role than previously believed. Insight into how beta bursts are generated in sensorimotor circuits can provide important constraints to theories about their functional role for movement control. To this end, we leverage and extend recent developments in high precision MEG for temporally resolved laminar analysis of burst activity, combined with a neocortical circuit model that simulates the biophysical generators of the electrical currents which drive beta bursts. This approach pinpoints the generation of beta bursts in human motor cortex to distinct excitatory synaptic inputs to deep and superficial cortical layers, which drive current flow in opposite directions. These laminar dynamics of beta bursts in motor cortex align with prior invasive animal recordings within the somatosensory cortex, and suggest a conserved mechanism for somatosensory and motor cortical beta bursts. More generally, we demonstrate the ability for uncovering the laminar dynamics of event-related neural signals in human non-invasive recordings.
33
Citation3
0
Save
4

Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning

Haroon Anwar et al.Oct 24, 2023
+10
S
S
H
Abstract Recent models of spiking neuronal networks have been trained to perform behaviors in static environments using a variety of learning rules, with varying degrees of biological realism. Most of these models have not been tested in dynamic visual environments where models must make predictions on future states and adjust their behavior accordingly. The models using these learning rules are often treated as black boxes, with little analysis on circuit architectures and learning mechanisms supporting optimal performance. Here we developed visual/motor spiking neuronal network models and trained them to play a virtual racket-ball game using several reinforcement learning algorithms inspired by the dopaminergic reward system. We systematically investigated how different architectures and circuit-motifs (feed-forward, recurrent, feedback) contributed to learning and performance. We also developed a new biologically-inspired learning rule that significantly enhanced performance, while reducing training time. Our models included visual areas encoding game inputs and relaying the information to motor areas, which used this information to learn to move the racket to hit the ball. Neurons in the early visual area relayed information encoding object location and motion direction across the network. Neuronal association areas encoded spatial relationships between objects in the visual scene. Motor populations received inputs from visual and association areas representing the dorsal pathway. Two populations of motor neurons generated commands to move the racket up or down. Model-generated actions updated the environment and triggered reward or punishment signals that adjusted synaptic weights so that the models could learn which actions led to reward. Here we demonstrate that our biologically-plausible learning rules were effective in training spiking neuronal network models to solve problems in dynamic environments. We used our models to dissect the circuit architectures and learning rules most effective for learning. Our model shows that learning mechanisms involving different neural circuits produce similar performance in sensory-motor tasks. In biological networks, all learning mechanisms may complement one another, accelerating the learning capabilities of animals. Furthermore, this also highlights the resilience and redundancy in biological systems.
2

Evolutionary and spike-timing-dependent reinforcement learning train spiking neuronal network motor control

Daniel Haşegan et al.Aug 10, 2022
+4
C
M
D
Abstract Despite being biologically unrealistic, artificial neural networks (ANNs) have been successfully trained to perform a wide range of sensory-motor behaviors. In contrast, the performance of more biologically realistic spiking neuronal network (SNN) models trained to perform similar behaviors remains relatively suboptimal. In this work, we aimed at pushing the field of SNNs forward by exploring the potential of different learning mechanisms to achieve optimal performance. Inspired by biological learning mechanisms operating at multiple timescales, we used spike-timing-dependent reinforcement learning (STDP-RL) and evolutionary strategy (EVOL) with SNNs to solve the CartPole reinforcement learning (RL) control problem. Though the role of STDP-RL in biological systems is well established, several other mechanisms, though not fully understood, work in concert during learning in vivo. Recreating accurate models that capture the interaction of STDP-RL with these diverse learning mechanisms is extremely difficult. EVOL is an alternative method, and has been successfully used in many studies to fit model neural responsiveness to electrophysiological recordings and in some cases for classification problems. One advantage of EVOL is that it may not need to capture all interacting components of synaptic plasticity, and thus provides a better alternative to STDP-RL. Here, we compared the performance of each algorithm after training, which revealed EVOL as a powerful method to training SNNs to perform sensory-motor behaviors. Our modeling opens up new capabilities for SNNs in RL and could serve as a testbed for neurobiologists aiming to understand multi-timescale learning mechanisms and dynamics in neuronal circuits.
9

Thalamocortical mechanisms regulating the relationship between transient beta events and human tactile perception

Robert Law et al.Oct 24, 2023
+5
H
S
R
Abstract Transient neocortical events with high spectral power in the 15–29Hz beta band are among the most reliable predictors of sensory perception. Prestimulus beta event rates in primary somatosensory cortex correlate with sensory suppression, most effectively 100–300ms before stimulus onset. However, the neural mechanisms underlying this perceptual association are unknown. We combined human magnetoencephalography (MEG) measurements with biophysical neural modeling to test potential cellular and circuit mechanisms that underlie observed correlations between prestimulus beta events and tactile detection. Extending prior studies, we found that simulated bursts from higher-order, non-lemniscal thalamus were sufficient to drive beta event generation and to recruit slow supragranular inhibition acting on a 300ms time scale to suppress sensory information. Further analysis showed that the same beta generating mechanism can lead to facilitated perception for a brief period when beta events occur simultaneously with tactile stimulation before inhibition is recruited. These findings were supported by close agreement between model-derived predictions and empirical MEG data. The post-event suppressive mechanism explains an array of studies that associate beta with decreased processing, while the during-event faciliatory mechanism may demand a reinterpretation of the role of beta events in the context of coincident timing.
2

Multiscale model of primary motor cortex circuits predicts in vivo cell type-specific, behavioral state-dependent dynamics

Salvador Durá-Bernal et al.Aug 10, 2022
+5
B
S
S
Abstract Understanding cortical function requires studying multiple scales: molecular, cellular, circuit and behavior. We developed a biophysically detailed multiscale model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity and dendritic synapse locations were tightly constrained by experimental data. The model includes long-range inputs from 7 thalamic and cortical regions, as well as noradrenergic inputs from locus coeruleus. Connectivity depended on cell class and cortical depth at sublaminar resolution. The model accurately predicted in vivo layer- and cell type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blocking and thalamus inactivation). It also enabled evaluation of multiple mechanistic hypotheses underlying the observed activity. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell type-specific multiscale dynamics associated with a range of experimental conditions and behaviors.
3

Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons

Craig Kelley et al.Oct 24, 2023
+4
S
S
C
Abstract Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We therefore investigated how well several biophysically-detailed multi-compartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates HCN channels and a shunting current, like that produced by Twik-related acid-sensitive K + (TASK) channels. TASK-like channel activity in this model was dependent on local peak HCN channel conductance ( I h ). We found that while this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of I h and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of I h and shunting current can produce the same impedance profile. New & Noteworthy We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
0

NetPyNE: a tool for data-driven multiscale modeling of brain circuits

Salvador Durá-Bernal et al.May 6, 2020
+11
P
B
S
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, e.g. a connectivity rule, instead of tens of loops to create millions of cell-to-cell connections. Users can then generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis -- connectivity matrices, voltage traces, raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing using NeuroML and SONATA standardized formats. NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate different brain regions and phenomena.
0

Human Neocortical Neurosolver (HNN): A new software tool for interpreting the cellular and network origin of human MEG/EEG data

Samuel Neymotin et al.May 7, 2020
+7
B
D
S
Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, ) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN’s core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal’s origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN’s ability to associate signals across scales makes it a unique tool for translational neuroscience research.
Load More