DS
David Sharp
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
31
(87% Open Access)
Cited by:
7,718
h-index:
82
/
i10-index:
250
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inflammation after trauma: Microglial activation and traumatic brain injury

Anil Ramlackhansingh et al.Apr 18, 2011
Abstract Objective: Patient outcome after traumatic brain injury (TBI) is highly variable. The underlying pathophysiology of this is poorly understood, but inflammation is potentially an important factor. Microglia orchestrate many aspects of this response. Their activation can be studied in vivo using the positron emission tomography (PET) ligand [11C](R)PK11195 (PK). In this study, we investigate whether an inflammatory response to TBI persists, and whether this response relates to structural brain abnormalities and cognitive function. Methods: Ten patients, studied at least 11 months after moderate to severe TBI, underwent PK PET and structural magnetic resonance imaging (including diffusion tensor imaging). PK binding potentials were calculated in and around the site of focal brain damage, and in selected distant and subcortical brain regions. Standardized neuropsychological tests were administered. Results: PK binding was significantly raised in the thalami, putamen, occipital cortices, and posterior limb of the internal capsules after TBI. There was no increase in PK binding at the original site of focal brain injury. High PK binding in the thalamus was associated with more severe cognitive impairment, although binding was not correlated with either the time since the injury or the extent of structural brain damage. Interpretation: We demonstrate that increased microglial activation can be present up to 17 years after TBI. This suggests that TBI triggers a chronic inflammatory response particularly in subcortical regions. This highlights the importance of considering the response to TBI as evolving over time and suggests interventions may be beneficial for longer intervals after trauma than previously assumed. ANN NEUROL 2011;
0

Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control

Robert Leech et al.Mar 2, 2011
The posterior cingulate cortex (PCC) is a central part of the default mode network (DMN) and part of the structural core of the brain. Although the PCC often shows consistent deactivation when attention is focused on external events, anatomical studies show that the region is not homogeneous, and electrophysiological recordings in nonhuman primates suggest that it is directly involved in some forms of attention. We report a functional magnetic resonance imaging study of an attentionally demanding task (either a zero- or two-back working memory task). Standard subtraction analysis within the PCC shows a relative deactivation as task difficulty increases. In contrast, a dual-regression functional connectivity analysis reveals a clear dissociation between ventral and dorsal parts of the PCC. As task difficulty increases, the ventral PCC shows reduced integration within the DMN and less anticorrelation with the cognitive control network (CCN) activated by the task. The dorsal PCC shows an opposite pattern, with increased DMN integration and more anticorrelation. At rest, the dorsal PCC also shows functional connectivity with both the DMN and attentional networks. As expected, these results provide evidence that the PCC is involved in supporting internally directed thought, as the region is more highly integrated with the DMN at low task demands. In contrast, the task-dependent increases in connectivity between the dorsal PCC and the CCN are consistent with a role for this region in modulating the dynamic interaction between these two networks controlling the efficient allocation of attention.
0

Brain age predicts mortality

James Cole et al.Apr 25, 2017
Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N=2001), then tested in the Lothian Birth Cohort 1936 (N=669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death.
0

White matter damage and cognitive impairment after traumatic brain injury

Kirsi Kinnunen et al.Dec 29, 2010
White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury and white matter damage is likely to be complex. We applied a flexible technique—tract-based spatial statistics—to explore whether damage to specific white matter tracts is associated with particular patterns of cognitive impairment. The commonly affected domains of memory, executive function and information processing speed were investigated in 28 patients in the post-acute/chronic phase following traumatic brain injury and in 26 age-matched controls. Analysis of fractional anisotropy and diffusivity maps revealed widespread differences in white matter integrity between the groups. Patients showed large areas of reduced fractional anisotropy, as well as increased mean and axial diffusivities, compared with controls, despite the small amounts of cortical and white matter damage visible on standard imaging. A stratified analysis based on the presence or absence of microbleeds (a marker of diffuse axonal injury) revealed diffusion tensor imaging to be more sensitive than gradient-echo imaging to white matter damage. The location of white matter abnormality predicted cognitive function to some extent. The structure of the fornices was correlated with associative learning and memory across both patient and control groups, whilst the structure of frontal lobe connections showed relationships with executive function that differed in the two groups. These results highlight the complexity of the relationships between white matter structure and cognition. Although widespread and, sometimes, chronic abnormalities of white matter are identifiable following traumatic brain injury, the impact of these changes on cognitive function is likely to depend on damage to key pathways that link nodes in the distributed brain networks supporting high-level cognitive functions.
0

Echoes of the Brain within the Posterior Cingulate Cortex

Robert Leech et al.Jan 4, 2012
There is considerable uncertainty about the function of the posterior cingulate cortex (PCC). The PCC is a major node within the default mode network (DMN) and has high metabolic activity and dense structural connectivity to widespread brain regions, which suggests it has a role as a cortical hub. The region appears to be involved in internally directed thought, for example, memory recollection. However, recent nonhuman primate work provides evidence for a more active role in the control of cognition, through signaling an environmental change and the need to alter behavior. For an organism to flexibly react to a changing environment, information processed in functionally distinct brain networks needs to be integrated by such a cortical hub. If the PCC is involved in this process, its brain activity should show a complex and dynamic pattern that partially reflects activity in other brain networks. Using fMRI in humans and a multivariate analysis, we demonstrate that the PCC shows this type of complex functional architecture, where echoes of multiple other brain networks are seen in separable yet overlapping subregions. For example, a predominantly ventral region shows strong functional connectivity to the rest of the DMN, whereas two subregions within the dorsal PCC show high connectivity to frontoparietal networks involved in cognitive control. PCC subregions showed distinct patterns of activity modulation during the performance of an attentionally demanding task, suggesting that parts of the dorsal PCC interact with frontoparietal networks to regulate the balance between internally and externally directed cognition.
0

Salience network integrity predicts default mode network function after traumatic brain injury

Valérie Bonnelle et al.Mar 5, 2012
Efficient behavior involves the coordinated activity of large-scale brain networks, but the way in which these networks interact is uncertain. One theory is that the salience network (SN)--which includes the anterior cingulate cortex, presupplementary motor area, and anterior insulae--regulates dynamic changes in other networks. If this is the case, then damage to the structural connectivity of the SN should disrupt the regulation of associated networks. To investigate this hypothesis, we studied a group of 57 patients with cognitive impairments following traumatic brain injury (TBI) and 25 control subjects using the stop-signal task. The pattern of brain activity associated with stop-signal task performance was studied by using functional MRI, and the structural integrity of network connections was quantified by using diffusion tensor imaging. Efficient inhibitory control was associated with rapid deactivation within parts of the default mode network (DMN), including the precuneus and posterior cingulate cortex. TBI patients showed a failure of DMN deactivation, which was associated with an impairment of inhibitory control. TBI frequently results in traumatic axonal injury, which can disconnect brain networks by damaging white matter tracts. The abnormality of DMN function was specifically predicted by the amount of white matter damage in the SN tract connecting the right anterior insulae to the presupplementary motor area and dorsal anterior cingulate cortex. The results provide evidence that structural integrity of the SN is necessary for the efficient regulation of activity in the DMN, and that a failure of this regulation leads to inefficient cognitive control.
0

Distinct frontal systems for response inhibition, attentional capture, and error processing

David Sharp et al.Mar 10, 2010
Stopping an action in response to an unexpected event requires both that the event is attended to, and that the action is inhibited. Previous neuroimaging investigations of stopping have failed to adequately separate these cognitive elements. Here we used a version of the widely used Stop Signal Task that controls for the attentional capture of stop signals. This allowed us to fractionate the contributions of frontal regions, including the right inferior frontal gyrus and medial frontal cortex, to attentional capture, response inhibition, and error processing. A ventral attentional system, including the right inferior frontal gyrus, has been shown to respond to unexpected stimuli. In line with this evidence, we reasoned that lateral frontal regions support attentional capture, whereas medial frontal regions, including the presupplementary motor area (pre-SMA), actually inhibit the ongoing action. We tested this hypothesis by contrasting the brain networks associated with the presentation of unexpected stimuli against those associated with outright stopping. Functional MRI images were obtained in 26 healthy volunteers. Successful stopping was associated with activation of the right inferior frontal gyrus, as well as the pre-SMA. However, only activation of the pre-SMA differentiated stopping from a high-level baseline that controlled for attentional capture. As expected, unsuccessful attempts at stopping activated the anterior cingulate cortex. In keeping with work in nonhuman primates these findings demonstrate that successful motor inhibition is specifically associated with pre-SMA activation.
0

Default Mode Network Connectivity Predicts Sustained Attention Deficits after Traumatic Brain Injury

Valérie Bonnelle et al.Sep 21, 2011
Traumatic brain injury (TBI) frequently produces impairments of attention in humans. These can result in a failure to maintain consistent goal-directed behavior. A predominantly right-lateralized frontoparietal network is often engaged during attentionally demanding tasks. However, lapses of attention have also been associated with increases in activation within the default mode network (DMN). Here, we study TBI patients with sustained attention impairment, defined on the basis of the consistency of their behavioral performance over time. We show that sustained attention impairments in patients are associated with an increase in DMN activation, particularly within the precuneus and posterior cingulate cortex. Furthermore, the interaction of the precuneus with the rest of the DMN at the start of the task, i.e., its functional connectivity, predicts which patients go on to show impairments of attention. Importantly, this predictive information is present before any behavioral evidence of sustained attention impairment, and the relationship is also found in a subgroup of patients without focal brain damage. TBI often results in diffuse axonal injury, which produces cognitive impairment by disconnecting nodes in distributed brain networks. Using diffusion tensor imaging, we demonstrate that structural disconnection within the DMN also correlates with the level of sustained attention. These results show that abnormalities in DMN function are a sensitive marker of impairments of attention and suggest that changes in connectivity within the DMN are central to the development of attentional impairment after TBI.
0

Default mode network functional and structural connectivity after traumatic brain injury

David Sharp et al.Aug 1, 2011
Traumatic brain injury often results in cognitive impairments that limit recovery. The underlying pathophysiology of these impairments is uncertain, which restricts clinical assessment and management. Here, we use magnetic resonance imaging to test the hypotheses that: (i) traumatic brain injury results in abnormalities of functional connectivity within key cognitive networks; (ii) these changes are correlated with cognitive performance; and (iii) functional connectivity within these networks is influenced by underlying changes in structural connectivity produced by diffuse axonal injury. We studied 20 patients in the chronic phase after traumatic brain injury compared with age-matched controls. Network function was investigated in detail using functional magnetic resonance imaging to analyse both regional brain activation, and the interaction of brain regions within a network (functional connectivity). We studied patients during performance of a simple choice-reaction task and at ‘rest’. Since functional connectivity reflects underlying structural connectivity, diffusion tensor imaging was used to quantify axonal injury, and test whether structural damage correlated with functional change. The patient group showed typical impairments in information processing and attention, when compared with age-matched controls. Patients were able to perform the task accurately, but showed slow and variable responses. Brain regions activated by the task were similar between the groups, but patients showed greater deactivation within the default mode network, in keeping with an increased cognitive load. A multivariate analysis of ‘resting’ state functional magnetic resonance imaging was then used to investigate whether changes in network function were present in the absence of explicit task performance. Overall, default mode network functional connectivity was increased in the patient group. Patients with the highest functional connectivity had the least cognitive impairment. In addition, functional connectivity at rest also predicted patterns of brain activation during later performance of the task. As expected, patients showed widespread white matter damage compared with controls. Lower default mode network functional connectivity was seen in those patients with more evidence of diffuse axonal injury within the adjacent corpus callosum. Taken together, our results demonstrate altered patterns of functional connectivity in cognitive networks following injury. The results support a direct relationship between white matter organization within the brain's structural core, functional connectivity within the default mode network and cognitive function following brain injury. They can be explained by two related changes: a compensatory increase in functional connectivity within the default mode network; and a variable degree of structural disconnection that modulates this change in network function.
0

Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle

Stephen Rogers et al.Sep 2, 2002
EB1 is an evolutionarily conserved protein that localizes to the plus ends of growing microtubules. In yeast, the EB1 homologue (BIM1) has been shown to modulate microtubule dynamics and link microtubules to the cortex, but the functions of metazoan EB1 proteins remain unknown. Using a novel preparation of the Drosophila S2 cell line that promotes cell attachment and spreading, we visualized dynamics of single microtubules in real time and found that depletion of EB1 by RNA-mediated inhibition (RNAi) in interphase cells causes a dramatic increase in nondynamic microtubules (neither growing nor shrinking), but does not alter overall microtubule organization. In contrast, several defects in microtubule organization are observed in RNAi-treated mitotic cells, including a drastic reduction in astral microtubules, malformed mitotic spindles, defocused spindle poles, and mispositioning of spindles away from the cell center. Similar phenotypes were observed in mitotic spindles of Drosophila embryos that were microinjected with anti-EB1 antibodies. In addition, live cell imaging of mitosis in Drosophila embryos reveals defective spindle elongation and chromosomal segregation during anaphase after antibody injection. Our results reveal crucial roles for EB1 in mitosis, which we postulate involves its ability to promote the growth and interactions of microtubules within the central spindle and at the cell cortex.
0
Citation393
0
Save
Load More