EC
Ella Csilléry
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
344
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions

Georg Krainer et al.Feb 17, 2021
+16
J
T
G
Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
18

Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions

Georg Krainer et al.May 7, 2020
+13
J
T
G
Abstract Many cellular proteins demix spontaneously from solution to form liquid condensates. These phase-separated systems have wide-ranging roles in health and disease. Elucidating the molecular driving forces underlying liquid–liquid phase separation (LLPS) is therefore a key objective for understanding biological function and malfunction. Here we show that proteins implicated in cellular LLPS, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, which form condensates at low salt concentrations, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that phase separation in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus provides a new view on the cooperation of hydrophobicity and non-ionic interactions as non-specific driving forces for the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
18
Citation16
0
Save
0

Biomolecular condensates sustain pH gradients at equilibrium driven by charge neutralisation

Hannes Ausserwöger et al.May 23, 2024
+16
A
K
H
Abstract Electrochemical gradients are essential to the functioning of cells and are typically formed across membranes using active transporters and require energy input to maintain them. Here, we show by contrast that biomolecular condensates are able to sustain significant pH gradients without any external energy input. We explore the thermodynamic driving forces that establish this gradient using a microfluidics-based droplet platform that allows us to sample in a continuous manner both the stability and composition of the condensates across a wide pH range. These results reveal that condensed biomolecular systems adjust the pH of the dense phase towards the isoelectric point (pI) of the component polypeptide chains. We demonstrate, on the basis of two representative systems, FUS and PGL3, that condensates can create both alkaline and acidic gradients with a magnitude exceeding one pH unit. Investigations of multicomponent protein/nucleic acid systems further show that heterotypic interactions can modulate condensate pH gradients. We further investigate using a bioinformatics approach the diversity of electrochemical properties of complex condensates by studying a large set of human condensate networks, showing that these span a wide range of mixture pIs and pH-response behaviours. In summary, our results reveal that protein condensation may present a fundamental physico-chemical mechanism for the effective segregation and optimisation of functional processes through changes in the emergent electrochemical microenvironment.
0
Citation3
0
Save
1

Quantifying collective interactions in biomolecular phase separation

Hannes Ausserwöger et al.Jun 3, 2023
+13
R
A
H
Abstract Biomolecular phase separation plays a pivotal role in governing critical biological functions and arises from the collective interactions of large numbers of molecules. Characterising the underlying collective interactions of phase separation, however, has proven to be challenging with currently available tools. Here, we propose a general and easily accessible strategy to quantify collective interactions in biomolecular phase separation with respect to composition and energetics. By measuring the dilute phase concentration of one species only, we determine tie line gradients and free energy dominance as dedicated descriptors of collective interactions. We apply this strategy to dissect the role of salts and small molecules on phase separation of the protein fused in sarcoma (FUS). We discover that monovalent salts can display both exclusion from or preferential partitioning into condensates to either counteract charge screening or enhance non-ionic interactions. Moreover, we show that the common hydrophobic interaction disruptor 1,6-hexanediol inhibits FUS phase separation by acting as a solvation agent capable of expanding the protein polypeptide chain. Taken together, our work presents a widely applicable strategy that enables quantification of collective interactions and provides unique insights into the underlying mechanisms of condensate formation and modulation.