EM
Edward Marcotte
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
84
(56% Open Access)
Cited by:
16,799
h-index:
84
/
i10-index:
206
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Detecting Protein Function and Protein-Protein Interactions from Genome Sequences

Edward Marcotte et al.Jul 30, 1999
+3
H
M
E
A computational method is proposed for inferring protein interactions from genome sequences on the basis of the observation that some pairs of interacting proteins have homologs in another organism fused into a single protein chain. Searching sequences from many genomes revealed 6809 such putative protein-protein interactions in Escherichia coli and 45,502 in yeast. Many members of these pairs were confirmed as functionally related; computational filtering further enriches for interactions. Some proteins have links to several other proteins; these coupled links appear to represent functional interactions such as complexes or pathways. Experimentally confirmed interacting pairs are documented in a Database of Interacting Proteins.
0
Citation1,653
0
Save
0

The genome sequence of the filamentous fungus Neurospora crassa

James Galagan et al.Apr 1, 2003
+74
G
C
J
Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.
0
Citation1,644
0
Save
0

Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles

Matteo Pellegrini et al.Apr 13, 1999
+2
M
E
M
Determining protein functions from genomic sequences is a central goal of bioinformatics. We present a method based on the assumption that proteins that function together in a pathway or structural complex are likely to evolve in a correlated fashion. During evolution, all such functionally linked proteins tend to be either preserved or eliminated in a new species. We describe this property of correlated evolution by characterizing each protein by its phylogenetic profile, a string that encodes the presence or absence of a protein in every known genome. We show that proteins having matching or similar profiles strongly tend to be functionally linked. This method of phylogenetic profiling allows us to predict the function of uncharacterized proteins.
0
Citation1,540
0
Save
0

Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation

Peng Lü et al.Dec 24, 2006
+2
R
C
P
0
Citation1,118
0
Save
0

A combined algorithm for genome-wide prediction of protein function

Edward Marcotte et al.Nov 1, 1999
+2
M
M
E
0
Citation917
0
Save
0

Genome evolution in the allotetraploid frog Xenopus laevis

Adam Session et al.Oct 1, 2016
+71
T
Y
A
To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of ‘fossil’ transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17–18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression. The two homoeologous subgenomes in the allotetraploid frog Xenopus laevis evolved asymmetrically; one often retained the ancestral state, whereas the other experienced gene loss, deletion, rearrangement and reduced gene expression. Xenopus laevis, also known as the African clawed frog or platanna, is an important model organism that is used in the study of vertebrate cell and developmental biology. It is a palaeotetraploid—the product of genome duplications that occurred many millions of years ago. This makes X. laevis ideal for the study of polyploidy, but has greatly complicated genome sequencing. Here an international research collaboration reports the X. laevis genome sequence and compares it to that of the related X. tropicalis. Their analyses confirm that X. laevis is an allotetraploid and distinguishes two subgenomes that evolved asymmetrically—one often retained the ancestral state and the other was subject to gene loss, deletion, rearrangement and reduced expression. The two diploid progenitor species diverged about 34 million years ago, combining to form an allotetraploid about 18 million years ago.
0
Citation898
0
Save
0

A Census of Human Soluble Protein Complexes

Pierre Havugimana et al.Aug 1, 2012
+21
E
A
P
Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand biochemical fractions that were subsequently analyzed by quantitative tandem mass spectrometry, to systematically identify a network of 13,993 high-confidence physical interactions among 3,006 stably associated soluble human proteins. Most of the 622 putative protein complexes we report are linked to core biological processes and encompass both candidate disease genes and unannotated proteins to inform on mechanism. Strikingly, whereas larger multiprotein assemblies tend to be more extensively annotated and evolutionarily conserved, human protein complexes with five or fewer subunits are far more likely to be functionally unannotated or restricted to vertebrates, suggesting more recent functional innovations.
0
Citation833
0
Save
0

Prioritizing candidate disease genes by network-based boosting of genome-wide association data

Insuk Lee et al.May 2, 2011
+2
P
U
I
Network "guilt by association" (GBA) is a proven approach for identifying novel disease genes based on the observation that similar mutational phenotypes arise from functionally related genes. In principle, this approach could account even for nonadditive genetic interactions, which underlie the synergistic combinations of mutations often linked to complex diseases. Here, we analyze a large-scale, human gene functional interaction network (dubbed HumanNet). We show that candidate disease genes can be effectively identified by GBA in cross-validated tests using label propagation algorithms related to Google's PageRank. However, GBA has been shown to work poorly in genome-wide association studies (GWAS), where many genes are somewhat implicated, but few are known with very high certainty. Here, we resolve this by explicitly modeling the uncertainty of the associations and incorporating the uncertainty for the seed set into the GBA framework. We observe a significant boost in the power to detect validated candidate genes for Crohn's disease and type 2 diabetes by comparing our predictions to results from follow-up meta-analyses, with incorporation of the network serving to highlight the JAK-STAT pathway and associated adaptors GRB2/SHC1 in Crohn's disease and BACH2 in type 2 diabetes. Consideration of the network during GWAS thus conveys some of the benefits of enrolling more participants in the GWAS study. More generally, we demonstrate that a functional network of human genes provides a valuable statistical framework for prioritizing candidate disease genes, both for candidate gene-based and GWAS-based studies.
0
Citation692
0
Save
0

A Probabilistic Functional Network of Yeast Genes

Insuk Lee et al.Nov 26, 2004
E
A
S
I
A conceptual framework for integrating diverse functional genomics data was developed by reinterpreting experiments to provide numerical likelihoods that genes are functionally linked. This allows direct comparison and integration of different classes of data. The resulting probabilistic gene network estimates the functional coupling between genes. Within this framework, we reconstructed an extensive, high-quality functional gene network for Saccharomyces cerevisiae , consisting of 4681 (∼81%) of the known yeast genes linked by ∼34,000 probabilistic linkages comparable in accuracy to small-scale interaction assays. The integrated linkages distinguish true from false-positive interactions in earlier data sets; new interactions emerge from genes' network contexts, as shown for genes in chromatin modification and ribosome biogenesis.
0
Citation682
0
Save
0

Engineering Escherichia coli to see light

Anselm Levskaya et al.Nov 23, 2005
+8
A
E
A
0
Citation614
0
Save
Load More