JI
John Irwin
Author with expertise in Computational Methods in Drug Discovery
University of California, San Francisco, QB3, Washington Sea Grant
+ 9 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
25
h-index:
54
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

Crystal structures of the σ2 receptor template large-library docking for selective chemotypes active in vivo

Assaf Alon et al.Oct 24, 2023
+13
J
J
A
Abstract The σ 2 receptor is a poorly understood transmembrane receptor that has attracted intense interest in many areas of biology including cancer imaging, Alzheimer’s disease, schizophrenia, and neuropathic pain. However, little is known regarding the molecular details of the receptor, and few highly selective ligands are available. Here, we report the crystal structure of the σ 2 receptor in complex with the clinical drug candidate roluperidone and the probe compound PB28. These structures, in turn, templated a large-scale docking screen of 490 million make-on-demand molecules. Of these, 484 compounds were synthesized and tested, prioritizing not only high-ranking docked molecules, but also those with mediocre and poor scores. Overall, 127 compounds with binding affinities superior to 1 μM were identified, all in new chemotypes, 31 of which had affinities superior to 50 nM. Intriguingly, hit rate fell smoothly and monotonically with docking score. Seeking to develop selective and biologically active probe molecules, we optimized three of the original docking hits for potency and for selectivity, achieving affinities in the 3 to 48 nM range and to up to 250-fold selectivity vs. the σ 1 receptor. Crystal structures of the newly discovered ligands bound to the σ 2 receptor were subsequently determined, confirming the docked poses. To investigate the contribution of the σ 2 receptor in pain processing, and to distinguish it from the contribution of the σ 1 receptor, two potent σ 2 -selective and one potent σ 1 /σ 2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands demonstrated timedependent decreases in mechanical hypersensitivity in the spared nerve injury model, supporting a role for the σ 2 receptor in nociception, and a possible role for σ 1 /σ 2 polypharmacology. This study illustrates the opportunities for rapid discovery of in vivo active and selective probes to study under-explored areas of biology using structurebased screens of diverse, ultra-large libraries following the elucidation of protein structures.
1

AlphaFold2 structures template ligand discovery

Nicholas Kapolka et al.Dec 22, 2023
+12
A
R
N
AlphaFold2 (AF2) and RosettaFold have greatly expanded the number of structures available for structure-based ligand discovery, even though retrospective studies have cast doubt on their direct usefulness for that goal. Here, we tested unrefined AF2 models
4

Ligand Strain Energy in Large Library Docking

Shuo Gu et al.Oct 24, 2023
+2
Y
M
S
ABSTRACT While small molecule internal strain is crucial to molecular docking, using it in evaluating ligand scores has remained elusive. Here, we investigate a technique that calculates strain using relative torsional populations in the Cambridge Structural Database, enabling fast pre-calculation of these energies. In retrospective studies of large docking screens of the dopamine D4 receptor and of AmpC β-lactamase, where close to 600 docking hits were tested experimentally, including such strain energies improved hit rates by preferentially reducing high-scoring decoy molecules that were strained. In a 40 target subset of the DUD-E benchmark, we found two thresholds that usefully distinguished between ligands and decoys: one based on the total strain energy of the small molecules, and one based on the maximum strain allowed for any given torsion within them. Using these criteria, about 75% of the benchmark targets had improved enrichment after strain filtering. Relying on pre-calculated population distributions, this approach is rapid, taking less than 0.04 second to evaluate a conformation on a standard core, making it pragmatic for pre-calculating strain in even ultra-large libraries. Since it is scoring function agnostic, it may be useful to multiple docking approaches; it is openly available at http://tldr.docking.org
1

Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 Macrodomain of SARS-CoV-2

Stefan Gahbauer et al.Oct 24, 2023
+19
M
G
S
The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.
1
Citation5
0
Save
1

Structure-based discovery of cannabinoid-1 receptor agonists with reduced side effects

Tia Tummino et al.Oct 24, 2023
+25
J
C
T
Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.
1
Paper
Citation1
0
Save
0

The Pan-Canadian Chemical Library: A Mechanism to Open Academic Chemistry to High-Throughput Virtual Screening

Corentin Bedart et al.Sep 6, 2024
+4
F
G
C
Abstract Computationally screening chemical libraries to discover molecules with desired properties is a common technique used in early-stage drug discovery. Recent progress in the field now enables the efficient exploration of billions of molecules within days or hours, but this exploration remains confined within the boundaries of the accessible chemistry space. While the number of commercially available compounds grows rapidly, it remains a limited subset of all druglike small molecules that could be synthesized. Here, we present a workflow where chemical reactions typically developed in academia and unconventional in drug discovery are exploited to dramatically expand the chemistry space accessible to virtual screening. We use this process to generate a first version of the Pan-Canadian Chemical Library, a collection of nearly 150 billion diverse compounds that does not overlap with other ultra-large libraries such as Enamine REAL or SAVI and could be a resource of choice for protein targets where other libraries have failed to deliver bioactive molecules.
0

Structure-based discovery of CFTR potentiators and inhibitors

Fangyu Liu et al.Sep 11, 2024
+11
J
A
F
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
0
Citation1
0
Save
0

Structure-based discovery of CFTR potentiators and inhibitors

Fangyu Liu et al.Sep 12, 2023
+11
J
A
F
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
0

Docking for molecules that bind in a symmetric stack with SymDOCK

Matthew Smith et al.Jun 3, 2024
+7
R
I
M
Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of much current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed, and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.
0

Structure-based discovery of positive allosteric modulators for the calcium sensing receptor

Fangyu Liu et al.Dec 28, 2023
+11
C
C
F
Abstract Drugs acting as positive allosteric modulators (PAMs) to enhance the activation of the calcium sensing receptor (CaSR) and to suppress parathyroid hormone (PTH) secretion can treat hyperparathyroidism but suffer from side effects including hypocalcemia and arrhythmias. Seeking new CaSR modulators, we docked libraries of 2.7 million and 1.2 billion molecules against transforming pockets in the active-state receptor dimer structure. Consistent with simulations suggesting that docking improves with library size, billion-molecule docking found new PAMs with a hit rate that was 2.7-fold higher than the million-molecule library and with hits up to 37-fold more potent. Structure-based optimization of ligands from both campaigns led to nanomolar leads, one of which was advanced to animal testing. This PAM displays 100-fold the potency of the standard of care, cinacalcet, in ex vivo organ assays, and reduces serum PTH levels in mice by up to 80% without the hypocalcemia typical of CaSR drugs. Cryo-EM structures with the new PAMs show that they induce residue rearrangements in the binding pockets and promote CaSR dimer conformations that are closer to the G-protein coupled state compared to established drugs. These findings highlight the promise of large library docking for therapeutic leads, especially when combined with experimental structure determination and mechanism. One sentence summary Structure-based virtual screening uncovers novel CaSR allosteric modulators with enhanced efficacy and less side effects.
Load More