PK
Philipp Khaitovich
Author with expertise in RNA Methylation and Modification in Gene Expression
Chongqing Medical University, Skolkovo Institute of Science and Technology, Shanghai Institute of Nutrition and Health
+ 9 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(40% Open Access)
Cited by:
22
h-index:
57
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Cellular development and evolution of the mammalian cerebellum

Mari Sepp et al.Oct 24, 2023
+18
I
K
M
The expansion of the neocortex, one of the hallmarks of mammalian evolution 1,2 , was accompanied by an increase in the number of cerebellar neurons 3 . However, little is known about the evolution of the cellular programs underlying cerebellum development in mammals. In this study, we generated single-nucleus RNA-sequencing data for ∼400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse, and the marsupial opossum. Our cross-species analyses revealed that the cellular composition and differentiation dynamics throughout cerebellum development are largely conserved, except for human Purkinje cells. Global transcriptome profiles, conserved cell state markers, and gene expression trajectories across neuronal differentiation show that the cerebellar cell type-defining programs have been overall preserved for at least 160 million years. However, we also discovered differences. We identified 3,586 genes that either gained or lost expression in cerebellar cells in one of the species, and 541 genes that evolved new expression trajectories during neuronal differentiation. The potential functional relevance of these cross-species differences is highlighted by the diverged expression patterns of several human disease-associated genes. Altogether, our study reveals shared and lineage-specific programs governing the cellular development of the mammalian cerebellum, and expands our understanding of the evolution of mammalian organ development.
1
Citation10
0
Save
1

The molecular evolution of spermatogenesis across mammals

Florent Murat et al.Oct 24, 2023
+21
S
N
F
The testis is a key male reproductive organ that produces gametes through the process of spermatogenesis. Testis morphologies and spermatogenesis evolve rapidly in mammals, presumably due to the evolutionary pressure on males to be reproductively successful 1,2 . The rapid evolution of the testis was shown to be reflected at the molecular level based on bulk-tissue work 3-8 , but the molecular evolution of individual spermatogenic cell types across mammalian lineages remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from eleven species that cover the three major mammalian lineages (eutherians, marsupials, egg-laying monotremes) and birds (the evolutionary outgroup), and include seven key primates. Our analyses reveal that the rapid evolution of the testis is driven by accelerated fixation rates of gene expression changes, amino acid altering substitutions, and newly emerged genes in late spermatogenic stages – likely facilitated by reduced pleiotropic constraints, haploid selection, and a transcriptionally permissive chromatin environment. We identify temporal expression changes of individual genes across species, which may have contributed to the emergence of species-specific phenotypes, but also conserved expression programs underlying ancestral spermatogenic processes. Sex chromosome analyses show that genes predominantly expressed in spermatogonia (i.e., germ cells fueling spermatogenesis) and Sertoli cells (i.e., somatic supporting cells) independently accumulated on X chromosomes across mammals during evolution, presumably due to male-beneficial selective forces. Further work uncovered that the process of meiotic sex chromosome inactivation (MSCI) also occurs in monotremes and hence is common to the different mammalian sex chromosome systems, contrary to previous inferences 9 . Thus, the general mechanism of meiotic silencing of unsynapsed chromatin (MSUC), which underlies MSCI, represents an ancestral mammalian feature. Together, our study illuminates the cellular and molecular evolution of mammalian spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.
1
Paper
Citation10
0
Save
0

Lipidome atlas of the adult human brain

Maria Osetrova et al.Sep 6, 2024
+21
W
A
M
Abstract Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain’s structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.
0
Citation2
0
Save
0

Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains

Ekaterina Khrameeva et al.May 6, 2020
+15
D
I
E
Identification of gene expression traits unique to the human brain sheds light on the mechanisms of human cognition. Here we searched for gene expression traits separating humans from other primates by analyzing 88,047 cell nuclei and 422 tissue samples representing 33 brain regions of humans, chimpanzees, bonobos, and macaques. We show that gene expression evolves rapidly within cell types, with more than two-thirds of cell type-specific differences not detected using conventional RNA sequencing of tissue samples. Neurons tend to evolve faster in all hominids, but non-neuronal cell types, such as astrocytes and oligodendrocyte progenitors, show more differences on the human lineage, including alterations of spatial distribution across neocortical layers.
0
0
Save
0

Extensive long-range polycomb interactions and weak compartmentalization are hallmarks of human neuronal 3D genome

Ilya Pletenev et al.Sep 19, 2023
+14
D
M
I
Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neurons. Here, we map the 3D genome architecture of neuronal and non-neuronal cells isolated from the human Wernicke9s area. Neurons display greatly reduced genome segregation into active and inactive compartments compared to other brain cells. Neuronal Hi-C maps reveal strong long-range interactions mediated by polycomb group (PcG) proteins, forming a unique network of contacts in neurons that is nearly absent in other brain cells. These interactions involve loci harboring developmental transcription factors repressed in neurons and other mature brain cells. Intriguingly, these loci exclusively in neurons contain bivalent promoters occupied by both H3K4me3 and H3K27me3 histone modifications, suggesting the functional role of PcG contacts in neurons. Furthermore, neurons exhibit distinctive organization at other layers of chromatin architecture, potentially attributed to elevated neuronal loop extrusion activity, which aligns with increased cohesin levels.
0

A Chronological Atlas of Natural Selection in the Human Genome during the Past Half-million Years

Hang Zhou et al.May 6, 2020
+8
R
S
H
The spatiotemporal distribution of recent human adaptation is a long standing question. We developed a new coalescent-based method that collectively assigned human genome regions to modes of neutrality or to positive, negative, or balancing selection. Most importantly, the selection times were estimated for all positive selection signals, which ranged over the last half million years, penetrating the emergence of anatomically modern human (AMH). These selection time estimates were further supported by analyses of the genome sequences from three ancient AMHs and the Neanderthals. A series of brain function-related genes were found to carry signals of ancient selective sweeps, which may have defined the evolution of cognitive abilities either before Neanderthal divergence or during the emergence of AMH. Particularly, signals of brain evolution in AMH are strongly related to Alzheimer's disease pathways. In conclusion, this study reports a chronological atlas of natural selection in Human.
0

Mutation accumulation differentially impacts ageing in mammalian tissues

Zeliha Turan et al.May 7, 2020
+3
H
P
Z
Medawar's mutation accumulation (MA) hypothesis explains ageing by the declining force of natural selection with age: slightly deleterious germline mutations that are functional in old age are not effectively eliminated by selection and therefore lead to ageing-related phenotypes. Although widely cited, empirical support for the MA hypothesis, particularly molecular evidence, has remained limited. Here we test one of its predictions, that genes relatively highly expressed in old adults vs. young adults should be under weaker purifying selection than those relatively highly expressed in young adults. To do so, we combine 23 RNA-sequencing and 35 microarray gene expression datasets (including 9 tissues from 5 mammalian species) with protein and regulatory sequence conservation estimates across mammals. We identify age-related decrease in transcriptome conservation (ADICT) in four tissues, brain, liver, lung, and artery, but not in other tissues, most notably muscle and heart. ADICT is driven both by decreased expression of highly conserved genes and up-regulation of poorly conserved genes during ageing, in line with the MA hypothesis. Lowly conserved and up-regulated genes in ADICT-associated tissues have overlapping functional properties, particularly involving apoptosis and inflammation, with no evidence for a history of positive selection. Our results suggest that tissues vary in how evolution has shaped their ageing patterns. We find that in some tissues, genes up-regulated during ageing, possibly in response to accumulating cellular and histological damage, are under weaker purifying selection than other genes. We propose that accumulation of slightly deleterious substitutions in these genes may underlie their suboptimal regulation and activity during ageing, shaping senescent phenotypes such as inflammaging.
0
0
Save
0

Evaluating intra- and inter-individual variation in the human placental transcriptome

David Hughes et al.May 7, 2020
+5
Z
M
D
Background: Gene expression variation is a phenotypic trait of particular interest as it represents the initial link between genotype and other phenotypes. Analyzing how such variation apportions among and within groups allows for the evaluation of how genetic and environmental factors influence such traits. It also provides opportunities to identify genes and pathways that may have been influenced by non-neutral processes. Here we use a population genetics framework and next generation sequencing to evaluate how gene expression variation is apportioned among four human groups in a natural biological tissue, the placenta. Results: We estimate that on average, 33.2%, 58.9% and 7.8% of the placental transcriptome is explained by variation within individuals, among individuals and among human groups, respectively. Additionally, when technical and biological traits are included in models of gene expression they account for roughly 2% of total gene expression variation. Notably, the variation that is significantly different among groups is enriched in biological pathways associated with immune response, cell signaling and metabolism. Many biological traits demonstrated correlated changes in expression in numerous pathways of potential interest to clinicians and evolutionary biologists. Finally, we estimate that the majority of the human placental transcriptome (65% of expressed genes) exhibits expression profiles consistent with neutrality; the remainder are consistent with stabilizing selection (26%), directional selection (4.9%), or diversifying selection (4.8%). Conclusion: We apportion placental gene expression variation into individual, population and biological trait factors and identify how each influence the transcriptome. Additionally, we advance methods to associate expression profiles with different forms of selection.
0

Predominant Patterns of Splicing Evolution on Human, Chimpanzee, and Macaque Evolutionary Lineages

Jieyi Xiong et al.May 7, 2020
+5
A
X
J
Although splicing is widespread and evolves rapidly among species, the mechanisms driving this evolution, as well as its functional implications, are not yet fully understood. We analyzed the evolution of splicing patterns based on transcriptome data from five tissues of humans, chimpanzees, rhesus macaques, and mice. In total, 1,526 exons and exon sets from 1,236 genes showed significant splicing differences among primates. More than 60% of these differences represent constitutive-to-alternative exon transitions while an additional 25% represent changes in exon inclusion frequency. These two dominant evolutionary patterns have contrasting conservation, regulation, and functional features. The sum of these features indicates that, despite their prevalence, constitutive-to-alternative exon transitions do not substantially contribute to long-term functional transcriptome changes. Conversely, changes in exon inclusion frequency appear to be functionally relevant, especially for changes taking place in the brain on the human evolutionary lineage.
1

Reduced purine biosynthesis in humans after their divergence from Neandertals

Vita Stepanova et al.Oct 24, 2023
+21
G
K
V
Abstract We analyze the metabolomes of humans, chimpanzees and macaques in muscle, kidney and three different regions of the brain. Whereas several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites in oxidative phosphorylation and purine biosynthesis are consistently present in lower concentrations in the brains of humans. In particular, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution is responsible for much or all of the reduction of de novo synthesis of purines in humans.
Load More