MB
Michael Breen
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(41% Open Access)
Cited by:
2,359
h-index:
29
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions

Solveig Sieberts et al.Oct 12, 2020
Abstract The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis- eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
1
Citation307
0
Save
10

Expansion of RNA sequence diversity and RNA editing rates throughout human cortical development

Winston Cuddleston et al.Jun 10, 2021
ABSTRACT Post-transcriptional modifications by RNA editing are essential for neurodevelopment, yet their developmental and regulatory features remain poorly resolved. We constructed a full temporal view of base-specific RNA editing in the developing human cortex, from early progenitors through fully mature cells found in the adult brain. Developmental regulation of RNA editing is characterized by an increase in editing rates for more than 10,000 selective editing sites, shifting between mid-fetal development and infancy, and a massive expansion of RNA hyper-editing sites that amass in the cortex through postnatal development into advanced age. These sites occur disproportionally in 3’UTRs of essential neurodevelopmental genes. These profiles are preserved in non-human primate and murine models, illustrating evolutionary conserved regulation of RNA editing in mammalian cortical development. RNA editing levels are commonly genetically regulated (editing quantitative trait loci, edQTLs) consistently across development or predominantly during prenatal or postnatal periods. Both consistent and temporal-predominant edQTLs co-localize with risk loci associated with neurological traits and disorders, including attention deficit hyperactivity disorder, schizophrenia, and sleep disorders. These findings expand the repertoire of highly regulated RNA editing sites in the brain and provide insights of how epitranscriptional sequence diversity by RNA editing contributes to neurodevelopment.
10
Citation3
0
Save
0

Transient peripheral blood transcriptomic response to ketamine treatment in children with ADNP syndrome

Ariela Grice et al.Jul 25, 2024
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5 mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating upregulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.
0
Citation1
0
Save
1

Cellular and genetic drivers of RNA editing variation in the human brain

Winston Cuddleston et al.Jul 16, 2021
ABSTRACT Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantified base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence GABAergic neurons, and oligodendrocytes. We found more selective editing and RNA hyper-editing in neurons relative to oligodendrocytes. The pattern of RNA editing was highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites was confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites were enriched in GTEx RNA-sequencing data, edited ∼twentyfold higher than all other sites, and variation in RNA editing was predominantly explained by neuronal proportions in bulk brain tissue. Finally, we discovered 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects.
1
Citation1
0
Save
19

Modeling gene x environment interactions in PTSD using glucocorticoid-induced transcriptomics in human neurons

Michael Breen et al.Mar 2, 2021
ABSTRACT Post-traumatic stress disorder (PTSD) results from severe trauma exposure, but the extent to which genetic and epigenetic risk factors impact individual clinical outcomes is unknown. We assessed the impact of genomic differences following glucocorticoid administration by examining the transcriptional profile of human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons and live cultured peripheral blood mononuclear cells from combat veterans with PTSD ( n =5) and without PTSD ( n =5). This parallel examination in baseline and glucocorticoid-treated conditions resolves cell-type specific and diagnosis-dependent elements of stress response, and permits discrimination of gene expression signals associated with PTSD risk from those induced by stress. Computational analyses revealed neuron-specific glucocorticoid-response expression patterns that were enriched for transcriptomic patterns observed in clinical PTSD samples. PTSD-specific signatures, albeit underpowered, accurately stratify veterans with PTSD relative to combat-exposed controls. Overall, in vitro PTSD and glucocorticoid response signatures in blood and brain cells represent exciting new platforms with which to test the genetic and epigenetic mechanisms underlying PTSD, identify biomarkers of PTSD risk and onset, and conduct drug-screening to identify novel therapeutics to prevent or ameliorate clinical phenotypes.
19
Citation1
0
Save
0

Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan McDermid syndrome and autism

Michael Breen et al.Nov 25, 2019
Background: Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of autism spectrum disorder (ASD), intellectual disability and language delay, and is caused by 22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the development of new therapeutic interventions. Methods: We developed human induced pluripotent stem cell (hiPSC)-based models of PMS by reprogramming peripheral blood samples from individuals with PMS (n=7) and their unaffected siblings (n=6). For each participant, up to three hiPSC clones were generated and differentiated into induced neural progenitor cells (iNPCs; n=32) and induced forebrain neurons (iNeurons; n=42). Genome-wide RNA-sequencing was applied to explore transcriptional differences between PMS probands and unaffected siblings. Results: Transcriptome analyses identified 391 differentially expressed genes (DEGs) in iNPCs and 82 DEGs in iNeurons, when comparing cells from PMS probands and unaffected siblings (FDR <5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic development and protein translation, while over-expressed genes were enriched for pre- and post-synaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel activity. Gene co-expression network analysis identified two modules in iNeurons that were over-expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules harbored a significant enrichment of genetic risk loci for developmental delay and intellectual disability. Finally, PMS-associated genes were integrated with other ASD iPSC transcriptome findings and several points of convergence were identified, indicating altered Wnt signaling, extracellular matrix and glutamatergic synapses. Limitations: Given the rarity of the condition, we could not carry out experimental validation in independent biological samples. In addition, functional and morphological phenotypes caused by loss of SHANK3 were not characterized here. Conclusions: This is the largest human neural sample analyzed in PMS. Genome-wide RNA-sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and distinct transcriptional signatures across iNPCs and iNeurons, including many genes implicated in risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway.
0

Temporal proteomic profiling of postnatal human cortical development

Michael Breen et al.Sep 13, 2017
Healthy cortical development depends on precise regulation of transcription and translation. However, the relationships between levels of mRNAs and their respective translated proteins have not yet been examined comprehensively in the developing human brain. We surveyed the proteomic landscape of 69 dorsolateral prefrontal cortex samples across seven stages of postnatal life and integrated these data with paired transcriptome data. We detected 911 proteins by liquid chromatography mass-spectrometry, and 83 were significantly associated with postnatal age (FDR P<0.05). Network analysis revealed five modules of co-regulated proteins, three of which correlated with age, including two modules with increasing expression implicated in gliogenesis and NADH-metabolism and one neurogenesis-related module with decreasing expression throughout development. These age-related protein modules overlapped with RNA modules and displayed collinear developmental trajectories between paired RNA and protein expression. We also found that the correspondence between mRNAs and proteins decrease as a function of age, especially for genes involved in neurogenesis and cytoskeleton organization. Finally, intellectual disability and developmental delay genetic risk loci converged on myelination and ATP metabolism-related modules in the proteome and transcriptome, consistent with their neuropathological relevance. Collectively, these findings reveal dynamic aspects of protein regulation in the human prefrontal cortex, providing new insights into development, maturation and disease.
Load More