SG
Sherif Gerges
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,685
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism

F. Satterstrom et al.Jan 23, 2020
+97
J
C
F

Summary

 We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.
1
Citation1,677
0
Save
0

A concerted neuron–astrocyte program declines in ageing and schizophrenia

Emi Ling et al.Mar 6, 2024
+20
M
J
E
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
0
Citation8
-1
Save
0

A new computational model captures fundamental architectural features of diverse biological networks

Bader Al-Anzi et al.Apr 2, 2016
+4
C
N
B
Complex biological systems are often represented by network graphs. However, their structural features are not adequately captured by existing computational graph models, perhaps because the datasets used to assemble them are incomplete and contain elements that lack shared functions. Here, we analyze three large, near-complete networks that produce specific cellular or behavioral outputs: a molecular yeast mitochondrial regulatory protein network, and two anatomical networks of very different scale, the mouse brain mesoscale connectivity network, and the C. elegans neuronal network. Surprisingly, these networks share similar characteristics. All consist of large communities composed of modules with general functions, and topologically distinct subnetworks spanning modular boundaries responsible for their more specific phenotypical outputs. We created a new model, SBM-PS, which generates networks by combining communities, followed by adjustment of connections by a path selection mechanism. This model captures fundamental architectural features that are common to the three networks.
0

Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism

F. Satterstrom et al.Nov 30, 2018
+155
M
J
F
We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n=35,584 total samples, 11,986 with ASD). Using an enhanced Bayesian framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate ≤ 0.1. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained for severe neurodevelopmental delay, while 53 show higher frequencies in individuals ascertained for ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most of the risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In human cortex single-cell gene expression data, expression of risk genes is enriched in both excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory/inhibitory imbalance underlying ASD.
0

Concerted neuron-astrocyte gene expression declines in aging and schizophrenia

Emi Ling et al.Jan 8, 2024
+21
K
K
E
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people’s cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron- and-Astrocyte Program (SNAP). In schizophrenia and aging – two conditions that involve declines in cognitive flexibility and plasticity 1,2 – cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.