DW
Donna Werling
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
2,008
h-index:
27
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

Stephan Sanders et al.Sep 1, 2015
+43
A
X
S
Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).
0
Citation1,328
0
Save
0

Integrative functional genomic analysis of human brain development and neuropsychiatric risks

Mingfeng Li et al.Dec 14, 2018
+97
Y
G
M
INTRODUCTION The brain is responsible for cognition, behavior, and much of what makes us uniquely human. The development of the brain is a highly complex process, and this process is reliant on precise regulation of molecular and cellular events grounded in the spatiotemporal regulation of the transcriptome. Disruption of this regulation can lead to neuropsychiatric disorders. RATIONALE The regulatory, epigenomic, and transcriptomic features of the human brain have not been comprehensively compiled across time, regions, or cell types. Understanding the etiology of neuropsychiatric disorders requires knowledge not just of endpoint differences between healthy and diseased brains but also of the developmental and cellular contexts in which these differences arise. Moreover, an emerging body of research indicates that many aspects of the development and physiology of the human brain are not well recapitulated in model organisms, and therefore it is necessary that neuropsychiatric disorders be understood in the broader context of the developing and adult human brain. RESULTS Here we describe the generation and analysis of a variety of genomic data modalities at the tissue and single-cell levels, including transcriptome, DNA methylation, and histone modifications across multiple brain regions ranging in age from embryonic development through adulthood. We observed a widespread transcriptomic transition beginning during late fetal development and consisting of sharply decreased regional differences. This reduction coincided with increases in the transcriptional signatures of mature neurons and the expression of genes associated with dendrite development, synapse development, and neuronal activity, all of which were temporally synchronous across neocortical areas, as well as myelination and oligodendrocytes, which were asynchronous. Moreover, genes including MEF2C , SATB2 , and TCF4 , with genetic associations to multiple brain-related traits and disorders, converged in a small number of modules exhibiting spatial or spatiotemporal specificity. CONCLUSION We generated and applied our dataset to document transcriptomic and epigenetic changes across human development and then related those changes to major neuropsychiatric disorders. These data allowed us to identify genes, cell types, gene coexpression modules, and spatiotemporal loci where disease risk might converge, demonstrating the utility of the dataset and providing new insights into human development and disease. Spatiotemporal dynamics of human brain development and neuropsychiatric risks. Human brain development begins during embryonic development and continues through adulthood (top). Integrating data modalities (bottom left) revealed age- and cell type–specific properties and global patterns of transcriptional dynamics, including a late fetal transition (bottom middle). We related the variation in gene expression (brown, high; purple, low) to regulatory elements in the fetal and adult brains, cell type–specific signatures, and genetic loci associated with neuropsychiatric disorders (bottom right; gray circles indicate enrichment for corresponding features among module genes). Relationships depicted in this panel do not correspond to specific observations. CBC, cerebellar cortex; STR, striatum; HIP, hippocampus; MD, mediodorsal nucleus of thalamus; AMY, amygdala.
0
Citation656
0
Save
54

Local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits

Yiliang Zhang et al.May 10, 2020
+10
K
Y
Y
Abstract Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions, which could shed unique light on etiologic sharing and provide additional mechanistic insights into the genetic basis of complex traits compared to global genetic correlation. However, accurate estimation of local genetic correlation remains challenging, in part due to extensive linkage disequilibrium in local genomic regions and pervasive sample overlap across studies. We introduce SUPERGNOVA, a unified framework to estimate both global and local genetic correlations using summary statistics from genome-wide association studies. Through extensive simulations and analyses of 30 complex traits, we demonstrate that SUPERGNOVA substantially outperforms existing methods and identifies 150 trait pairs with significant local genetic correlations. In particular, we show that the positive, consistently-identified, yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically-distinct genetic signatures with bidirectional local genetic correlations. We believe that statistically-rigorous local genetic correlation analysis could accelerate progress in complex trait genetics research.
54
Citation24
0
Save
0

Whole Genome Sequencing in Psychiatric Disorders: the WGSPD Consortium

Stephan Sanders et al.Jul 7, 2017
+26
B
C
S
As technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome, through pilot WGS projects, will be critical to determine which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The WGSPD consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.
0

Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism

F. Satterstrom et al.Nov 30, 2018
+155
M
J
F
We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n=35,584 total samples, 11,986 with ASD). Using an enhanced Bayesian framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate ≤ 0.1. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained for severe neurodevelopmental delay, while 53 show higher frequencies in individuals ascertained for ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most of the risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In human cortex single-cell gene expression data, expression of risk genes is enriched in both excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory/inhibitory imbalance underlying ASD.
0

Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex

Donna Werling et al.Mar 22, 2019
+31
M
Z
D
Variation in gene expression underlies neurotypical development, while genomic variants contribute to neuropsychiatric disorders. BrainVar is a unique resource of paired whole-genome sequencing and bulk-tissue RNA-sequencing from the human dorsolateral prefrontal cortex of 176 neurotypical individuals across prenatal and postnatal development, providing the opportunity to assay genomic and transcriptomic variation in tandem. Leveraging this resource, we identified rare premature stop codons with commensurate reduced and allele-specific expression of corresponding genes, and common variants that alter gene expression (expression quantitative trait loci, eQTLs). Categorizing eQTLs by prenatal and postnatal effect, genes affected by temporally-specific eQTLs, compared to constitutive eQTLs, are enriched for haploinsufficiency, protein-protein interactions, and neuropsychiatric disorder risk loci. Expression levels of over 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell type specific genes and neuropsychiatric disorder loci, underscoring the importance of cataloguing developmental trajectories in understanding cortical physiology and pathology.
0

Limited contribution of rare, noncoding variation to autism spectrum disorder from sequencing of 2,076 genomes in quartet families

Donna Werling et al.Apr 13, 2017
+44
J
H
D
Genomic studies to date in autism spectrum disorder (ASD) have largely focused on newly arising mutations that disrupt protein coding sequence and strongly influence risk. We evaluate the contribution of noncoding regulatory variation across the size and frequency spectrum through whole genome sequencing of 519 ASD cases, their unaffected sibling controls, and parents. Cases carry a small excess of de novo (1.02-fold) noncoding variants, which is not significant after correcting for paternal age. Assessing 51,801 regulatory classes, no category is significantly associated with ASD after correction for multiple testing. The strongest signals are observed in coding regions, including structural variation not detected by previous technologies and missense variation. While rare noncoding variation likely contributes to risk in neurodevelopmental disorders, no category of variation has impact equivalent to loss-of-function mutations. Average effect sizes are likely to be smaller than that for coding variation, requiring substantially larger samples to quantify this risk.
14

Developmental dynamics of voltage-gated sodium channel isoform expression in the human and mouse neocortex

Lindsay Liang et al.Nov 18, 2020
+11
S
S
L
Abstract Objective Genetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human neocortex. Methods RNA-seq data from 176 human dorsolateral prefrontal cortex samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples. Results In the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A a synchronized 5N/5A transition occurs between 24 post-conceptual weeks (2 nd trimester) and six years of age. In mice, the equivalent 5N/5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories. Significance Splice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general.