TN
Thomas Norman
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Memorial Sloan Kettering Cancer Center, South Dakota State University, University of California, San Francisco
+ 7 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
21
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
338

Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq

Joseph Replogle et al.Oct 24, 2023
+14
A
R
J
Abstract A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (pooled CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells and present a framework to power biological discovery with the resulting genotype-phenotype map. We use transcriptional phenotypes to predict the function of poorly-characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86 , ZNF236 , and SPATA5L1 ), transcription ( C7orf26 ), and mitochondrial respiration ( TMEM242 ). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena – from RNA processing to differentiation. We leverage this ability to systematically identify the genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene function and cellular behavior.
338
Paper
Citation18
0
Save
10

Heterogeneity of Inflammation-associated Synovial Fibroblasts in Rheumatoid Arthritis and Its Drivers

Melanie Smith et al.Oct 24, 2023
+7
M
V
M
Abstract Inflammation of non-barrier immunologically quiescent tissues is associated with a massive influx of blood-borne innate and adaptive immune cells. Cues from the latter are likely to alter and expand the spectrum of states observed in cells that are constitutively resident. However, local communications between immigrant and resident cell types in human inflammatory disease remain poorly understood. Here, we explored heterogeneity of synovial fibroblasts (FLS) in inflamed joints of rheumatoid arthritis (RA) patients using paired single cell RNA and ATAC sequencing (scRNA/ATAC-seq), multiplexed imaging, and spatial transcriptomics along with in vitro modeling of cell extrinsic factor signaling. These analyses suggest that local exposures to myeloid and T cell derived cytokines, TNFα, IFNγ, IL-1β, or lack thereof, drive six distinct FLS states some of which closely resemble fibroblast states in other disease-affected tissues including skin and colon. Our results highlight a role for concurrent, spatially distributed cytokine signaling within the inflamed synovium.
10
Citation3
0
Save
48

Environmental challenge rewires functional connections among human genes

Benjamin Herken et al.Oct 24, 2023
L
T
G
B
A fundamental question in biology is how a limited number of genes combinatorially govern cellular responses to environmental changes. While the prevailing hypothesis is that relationships between genes, processes, and ontologies could be plastic to achieve this adaptability, quantitatively comparing human gene functional connections between specific environmental conditions at scale is very challenging. Therefore, it remains unclear whether and how human genetic interaction networks are rewired in response to changing environmental conditions. Here, we developed a framework for mapping context-specific genetic interactions, enabling us to measure the plasticity of human genetic architecture upon environmental challenge for ~250,000 interactions, using cell cycle interruption, genotoxic perturbation, and nutrient deprivation as archetypes. We discover large-scale rewiring of human gene relationships across conditions, highlighted by dramatic shifts in the functional connections of epigenetic regulators (TIP60), cell cycle regulators (PP2A), and glycolysis metabolism. Our study demonstrates that upon environmental perturbation, intra-complex genetic rewiring is rare while inter-complex rewiring is common, suggesting a modular and flexible evolutionary genetic strategy that allows a limited number of human genes to enable adaptation to a large number of environmental conditions.
63

Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors

Joseph Replogle et al.Oct 24, 2023
+15
A
J
J
Abstract CRISPR interference (CRISPRi) enables programmable, reversible, and titratable repression of gene expression (knockdown) in mammalian cells. Initial CRISPRi-mediated genetic screens have showcased the potential to address basic questions in cell biology, genetics, and biotechnology, but wider deployment of CRISPRi screening has been constrained by the large size of single guide RNA (sgRNA) libraries and challenges in generating cell models with consistent CRISPRi-mediated knockdown. Here, we present next-generation CRISPRi sgRNA libraries and effector expression constructs that enable strong and consistent knockdown across mammalian cell models. First, we combine empirical sgRNA selection with a dual-sgRNA library design to generate an ultra-compact (1-3 elements per gene), highly active CRISPRi sgRNA library. Next, we rigorously compare CRISPRi effectors to show that the recently published Zim3-dCas9 provides the best balance between strong on-target knockdown and minimal nonspecific effects on cell growth or the transcriptome. Finally, we engineer a suite of cell lines with stable expression of Zim3-dCas9 and robust on-target knockdown. Our results and publicly available reagents establish best practices for CRISPRi genetic screening.
0

Exploring genetic interaction manifolds constructed from rich phenotypes

Thomas Norman et al.May 6, 2020
+5
J
M
T
Synergistic interactions between gene functions drive cellular complexity. However, the combinatorial explosion of possible genetic interactions (GIs) has necessitated the use of scalar interaction readouts (e.g. growth) that conflate diverse outcomes. Here we present an analytical framework for interpreting manifolds constructed from high-dimensional interaction phenotypes. We applied this framework to rich phenotypes obtained by Perturb-seq (single-cell RNA-seq pooled CRISPR screens) profiling of strong GIs mined from a growth-based, gain-of-function GI map. Exploration of this manifold enabled ordering of regulatory pathways, principled classification of GIs (e.g. identifying true suppressors), and mechanistic elucidation of synthetic lethal interactions, including an unexpected synergy between CBL and CNN1 driving erythroid differentiation. Finally, we apply recommender system machine learning to predict interactions, facilitating exploration of vastly larger GI manifolds.
0

Molecular recording of mammalian embryogenesis

M.K. Chan et al.May 6, 2020
+8
S
Z
M
Understanding the emergence of complex multicellular organisms from single totipotent cells, or ontogenesis, represents a foundational question in biology. The study of mammalian development is particularly challenging due to the difficulty of monitoring embryos in utero, the variability of progenitor field sizes, and the indeterminate relationship between the generation of uncommitted progenitors and their progression to subsequent stages. Here, we present a flexible, high information, multi-channel molecular recorder with a single cell (sc) readout and apply it as an evolving lineage tracer to define a mouse cell fate map from fertilization through gastrulation. By combining lineage information with scRNA-seq profiles, we recapitulate canonical developmental relationships between different tissue types and reveal an unexpected transcriptional convergence of endodermal cells from extra-embryonic and embryonic origins, illustrating how lineage information complements scRNA-seq to define cell types. Finally, we apply our cell fate map to estimate the number of embryonic progenitor cells and the degree of asymmetric partitioning within the pluripotent epiblast during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems to facilitate a quantitative framework for describing developmental processes.
0

Approaches to maximize sgRNA-barcode coupling in Perturb-seq screens

Britt Adamson et al.May 6, 2020
J
M
T
B
Perturb-seq is a platform for single-cell gene expression profiling of pooled CRISPR screens. Like many functional genomics platforms, Perturb-seq relies on lentiviral transduction to introduce perturbation libraries to cells. On this platform, these are barcoded sgRNA libraries. A critical consideration for performing Perturb-seq experiments is uncoupling of barcodes from linked sgRNA expression cassettes, which can occur during lentiviral transduction of co-packaged libraries due to reverse transcriptase-mediated template switching. This problem is common to lentiviral libraries designed with linked variable regions. Here, we demonstrate that recombination between Perturb-seq vectors scrambles linked variable regions separated by 2 kb. This predicts information loss in Perturb-seq screens performed with co-packaged libraries. We also demonstrate ways to address this problem and discuss best practices for single-cell screens with transcriptional readouts.
0

Titrating gene expression with series of systematically compromised CRISPR guide RNAs

Marco Jost et al.May 6, 2020
+8
R
D
M
Biological phenotypes arise from the degrees to which genes are expressed, but the lack of tools to precisely control gene expression limits our ability to evaluate the underlying expression-phenotype relationships. Here, we describe a readily implementable approach to titrate expression of human genes using series of systematically compromised sgRNAs and CRISPR interference. We empirically characterize the activities of compromised sgRNAs using large-scale measurements across multiple cell models and derive the rules governing sgRNA activity using deep learning, enabling construction of a compact sgRNA library to titrate expression of ~2,400 genes involved in central cell biology and a genome-wide in silico library. Staging cells along a continuum of gene expression levels combined with rich single-cell RNA-seq readout reveals gene-specific expression-phenotype relationships with expression level-specific responses. Our work provides a general tool to control gene expression, with applications ranging from tuning biochemical pathways to identifying suppressors for diseases of dysregulated gene expression.
0

Direct capture of CRISPR guides enables scalable, multiplexed, and multi-omic Perturb-seq

Joseph Replogle et al.May 6, 2020
+7
T
A
J
Pairing CRISPR-based genetic screens with single-cell transcriptional phenotypes (Perturb-seq) has advanced efforts to explore the function of mammalian genes and genetic networks. We present strategies for Perturb-seq that enable direct capture of CRISPR sgRNAs within 3' or 5' single-cell RNA-sequencing libraries using the 10x Genomics platform. This technology greatly expands the accessibility, scalability, and flexibility of Perturb-seq, specifically enabling use with programmed combinatorial perturbations and multiplexing with multi-omic measurements.