KV
Kay-Michael Voit
Author with expertise in Neural Interface Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
8
h-index:
9
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Freely-moving mice visually pursue prey using a retinal area with least optic flow

Carl Holmgren et al.Jun 16, 2021
+5
D
P
C
Abstract Mice have a large visual field that is constantly stabilized by vestibular ocular reflex driven eye rotations that counter head-rotations. While maintaining their extensive visual coverage is advantageous for predator detection, mice also track and capture prey using vision. However, in the freely moving animal quantifying object location in the field of view is challenging. Here, we developed a method to digitally reconstruct and quantify the visual scene of freely moving mice performing a visually based prey capture task. By isolating the visual sense and combining amouse eye optic model with the head and eye rotations, the detailed reconstruction of the digital environment and retinal features were projected onto the corneal surface for comparison, and updated throughout the behavior. By quantifying the spatial location of objects in the visual scene and their motion throughout the behavior, we show that the image of the prey is maintained within a small area, the functional focus, in the upper-temporal part of the retina. This functional focus coincides with a region of minimal optic flow in the visual field and consequently minimal motion-induced image blur during pursuit, as well as the reported high density-region of Alpha-ON sustained retinal ganglion cells.
1

A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice

Alexandr Klioutchnikov et al.Apr 22, 2022
+3
J
D
A
Abstract Recent advances in head-mounted microscopes have enabled imaging of neuronal activity using genetic-tools in freely moving mice but these microscopes are restricted to recording in minimally lit arenas and imaging upper cortical layers. Here we built a 2 gram, three-photon excitation-based microscope, containing a z-drive that enabled access to all cortical layers while mice freely behaved in a fully lit environment. We show that neuronal population activity in cortical layer-4 and layer-6 was differentially modulated by lit and dark conditions during free exploration.
1
Citation3
0
Save
5

Anatomically-based skeleton kinetics and pose estimation in freely-moving rodents

Arne Monsees et al.Nov 4, 2021
+5
D
K
A
Abstract Forming a complete picture of the relationship between neural activity and body kinetics requires quantification of skeletal joint biomechanics during behavior. However, without detailed knowledge of the underlying skeletal motion, inferring joint kinetics from surface tracking approaches is difficult, especially for animals where the relationship between surface anatomy and skeleton changes during motion. Here we developed a videography-based method enabling detailed three-dimensional kinetic quantification of an anatomically defined skeleton in untethered freely-behaving animals. This skeleton-based model has been constrained by anatomical principles and joint motion limits and provided skeletal pose estimates for a range of rodent sizes, even when limbs were occluded. Model-inferred joint kinetics for both gait and gap-crossing behaviors were verified by direct measurement of limb placement, showing that complex decision-making behaviors can be accurately reconstructed at the level of skeletal kinetics using our anatomically constrained model.
0

Accurate action potential inference from a calcium sensor protein through biophysical modeling

David Greenberg et al.Nov 29, 2018
+8
K
D
D
Multiphoton imaging of genetically encoded calcium indicators is routinely used to report activity from populations of spatially resolved neurons in vivo. However, since the relationship between fluorescence and action potentials (APs) is nonlinear and varies over neurons, quantitatively inferring AP discharge is problematic. To address this we developed a biophysical model of calcium binding kinetics for the indicator GCaMP6s that accurately describes AP-evoked fluorescence changes in vivo. The model's physical interpretation allowed the same parameters to describe GCaMP6s binding kinetics for both in vitro binding assays and in vivo imaging. Using this model, we developed an algorithm to infer APs from fluorescence and measured its accuracy with cell-attached electrical recordings. This approach consistently inferred more accurate AP counts and times than alternative methods for firing rates from 0 to >20 Hz, while requiring less training data. These results demonstrate the utility of quantitative, biophysically grounded models for complex biological data.