SG
Samuel Gershman
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
70
(53% Open Access)
Cited by:
7,525
h-index:
70
/
i10-index:
187
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Building machines that learn and think like people

Brenden Lake et al.Nov 24, 2016
Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
0

The successor representation in human reinforcement learning

Ida Momennejad et al.Aug 25, 2017
Theories of reward learning in neuroscience have focused on two families of algorithms thought to capture deliberative versus habitual choice. ‘Model-based’ algorithms compute the value of candidate actions from scratch, whereas ‘model-free’ algorithms make choice more efficient but less flexible by storing pre-computed action values. We examine an intermediate algorithmic family, the successor representation, which balances flexibility and efficiency by storing partially computed action values: predictions about future events. These pre-computation strategies differ in how they update their choices following changes in a task. The successor representation’s reliance on stored predictions about future states predicts a unique signature of insensitivity to changes in the task’s sequence of events, but flexible adjustment following changes to rewards. We provide evidence for such differential sensitivity in two behavioural studies with humans. These results suggest that the successor representation is a computational substrate for semi-flexible choice in humans, introducing a subtler, more cognitive notion of habit. Momennejad et al. formulate and provide evidence for the successor representation, a computational learning mechanism intermediate between the two dominant models (a fast but inflexible ‘model-free’ system and a flexible but slow ‘model-based’ one).
0

Accountability of AI Under the Law: The Role of Explanation

Finale Doshi‐Velez et al.Jan 1, 2017
The ubiquity of systems using artificial intelligence or "AI" has brought increasing attention to how those systems should be regulated. The choice of how to regulate AI systems will require care. AI systems have the potential to synthesize large amounts of data, allowing for greater levels of personalization and precision than ever before|applications range from clinical decision support to autonomous driving and predictive policing. That said, common sense reasoning [McCarthy, 1960] remains one of the holy grails of AI, and there exist legitimate concerns about the intentional and unintentional negative consequences of AI systems [Bostrom, 2003, Amodei et al., 2016, Sculley et al., 2014].There are many ways to hold AI systems accountable. In this work, we focus on one: explanation. Questions about a legal right to explanation from AI systems was recently debated in the EU General Data Protection Regulation [Goodman and Flaxman, 2016, Wachter et al., 2017], and thus thinking carefully about when and how explanation from AI systems might improve accountability is timely. Good choices about when to demand explanation can help prevent negative consequences from AI systems, while poor choices may not only fail to hold AI systems accountable but also hamper the development of much-needed beneficial AI systems.Below, we briefly review current societal, moral, and legal norms around explanation, and then focus on the different contexts under which explanation is currently required under the law. We find that there exists great variation around when explanation is demanded, but there also exists important consistencies: when demanding explanation from humans, what we typically want to know is how and whether certain input factors affected the final decision or outcome.These consistencies allow us to list the technical considerations that must be considered if we desired AI systems that could provide kinds of explanations that are currently required of humans under the law. Contrary to popular wisdom of AI systems as indecipherable black boxes, we find that this level of explanation should often be technically feasible but may sometimes be practically onerous|there are certain aspects of explanation that may be simple for humans to provide but challenging for AI systems, and vice versa. As an interdisciplinary team of legal scholars, computer scientists, and cognitive scientists, we recommend that for the present, AI systems can and should be held to a similar standard of explanation as humans currently are; in the future we may wish to hold an AI to a different standard.
1

Predictive representations can link model-based reinforcement learning to model-free mechanisms

Evan Russek et al.Sep 25, 2017
Humans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation.
Load More