XL
Xinhao Liu
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
393
h-index:
16
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single-Image Noise Level Estimation for Blind Denoising

Xinhao Liu et al.Sep 25, 2013
M
M
X
Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.
0

Practical Aspects of Phylogenetic Network Analysis Using PhyloNet

Zhen Cao et al.Aug 24, 2019
+2
H
X
Z
Phylogenetic networks extend trees to enable simultaneous modeling of both vertical and horizontal evolutionary processes. PhyloNet is a software package that has been under constant development for over 10 years and includes a wide array of functionalities for inferring and analyzing phylogenetic networks. These functionalities differ in terms of the input data they require, the criteria and models they employ, and the types of information they allow to infer about the networks beyond their topologies. Furthermore, PhyloNet includes functionalities for simulating synthetic data on phylogenetic networks, quantifying the topological differences between phylogenetic networks, and evaluating evolutionary hypotheses given in the form of phylogenetic networks. In this paper, we use a simulated data set to illustrate the use of several of PhyloNet's functionalities and make recommendations on how to analyze data sets and interpret the results when using these functionalities. All inference methods that we illustrate are incomplete lineage sorting (ILS) aware; that is, they account for the potential of ILS in the data while inferring the phylogenetic network. While the models do not include gene duplication and loss, we discuss how the methods can be used to analyze data in the presence of polyploidy. The concept of species is irrelevant for the computational analyses enabled by PhyloNet in that species-individuals mappings are user-defined. Consequently, none of the functionalities in PhyloNet deals with the task of species delimitation. In this sense, the data being analyzed could come from different individuals within a single species, in which case population structure along with potential gene flow is inferred (assuming the data has sufficient signal), or from different individuals sampled from different species, in which case the species phylogeny is being inferred.
0

DeST-OT: Alignment of Spatiotemporal Transcriptomics Data

Pál Halmos et al.Mar 10, 2024
+3
J
X
P
Abstract Spatially resolved transcriptomics (SRT) measures mRNA transcripts at thousands of locations within a tissue slice, revealing spatial variations in gene expression and distribution of cell types. In recent studies, SRT has been applied to tissue slices from multiple timepoints during the development of an organism. Alignment of this spatiotemporal transcriptomics data can provide insights into the gene expression programs governing the growth and differentiation of cells over space and time. We introduce DeST-OT ( De velopmental S patio T emporal O ptimal T ransport), a method to align SRT slices from pairs of developmental timepoints using the framework of optimal transport (OT). DeST-OT uses semi-relaxed optimal transport to precisely model cellular growth, death, and differentiation processes that are not well-modeled by existing alignment methods. We demonstrate the advantage of DeST-OT on simulated slices. We further introduce two metrics to quantify the plausibility of a spatiotemporal alignment: a growth distortion metric which quantifies the discrepancy between the inferred and the true cell type growth rates, and a migration metric which quantifies the distance traveled between ancestor and descendant cells. DeST-OT outperforms existing methods on these metrics in the alignment of spatiotemporal transcriptomics data from the development of axolotl brain. Code availability Software is available at https://github.com/raphael-group/DeST_OT
8

PASTE2: Partial Alignment of Multi-slice Spatially Resolved Transcriptomics Data

Xinhao Liu et al.Jan 8, 2023
B
R
X
Spatially resolved transcriptomics (SRT) technologies measure mRNA expression at thousands of locations in a tissue slice. However, nearly all SRT technologies measure expression in two dimensional slices extracted from a three-dimensional tissue, thus losing information that is shared across multiple slices from the same tissue. Integrating SRT data across multiple slices can help recover this information and improve downstream expression analyses, but multi-slice alignment and integration remains a challenging task. Existing methods for integrating SRT data either do not use spatial information or assume that the morphology of the tissue is largely preserved across slices, an assumption that is often violated due to biological or technical reasons. We introduce PASTE2, a method for partial alignment and 3D reconstruction of multi-slice SRT datasets, allowing only partial overlap between aligned slices and/or slice-specific cell types. PASTE2 formulates a novel partial Fused Gromov-Wasserstein Optimal Transport problem, which we solve using a conditional gradient algorithm. PASTE2 includes a model selection procedure to estimate the fraction of overlap between slices, and optionally uses information from histological images that accompany some SRT experiments. We show on both simulated and real data that PASTE2 obtains more accurate alignments than existing methods. We further use PASTE2 to reconstruct a 3D map of gene expression in a Drosophila embryo from a 16 slice Stereo-seq dataset. PASTE2 produces accurate alignments of multi-slice datasets from multiple SRT technologies, enabling detailed studies of spatial gene expression across a wide range of biological applications.Software is available at https://github.com/raphael-group/paste2.
0

A Divide-and-Conquer Method for Scalable Phylogenetic Network Inference from Multi-locus Data

Jiafan Zhu et al.Mar 24, 2019
L
H
X
J
Reticulate evolutionary histories, such as those arising in the presence of hybridization, are best modeled as phylogenetic networks. Recently developed methods allow for statistical inference of phylogenetic networks while also accounting for other processes, such as incomplete lineage sorting (ILS). However, these methods can only handle a small number of loci from a handful of genomes. In this paper, we introduce a novel two-step method for scalable inference of phylogenetic networks from the sequence alignments of multiple, unlinked loci. The method infers networks on subproblems and then merges them into a network on the full set of taxa. To reduce the number of trinets to infer, we formulate a Hitting Set version of the problem of finding a small number of subsets, and implement a simple heuristic to solve it. We studied their performance, in terms of both running time and accuracy, on simulated as well as on biological data sets. The two-step method accurately infers phylogenetic networks at a scale that is infeasible with existing methods. The results are a significant and promising step towards accurate, large-scale phylogenetic network inference. We implemented the algorithms in the publicly available software package PhyloNet (https://bioinfocs.rice.edu/PhyloNet).
0

Variational Inference Using Approximate Likelihood Under the Coalescent With Recombination

Xinhao Liu et al.Aug 20, 2020
L
H
X
Abstract Coalescent methods are proven and powerful tools for population genetics, phylogenetics, epidemiology, and other fields. A promising avenue for the analysis of large genomic alignments, which are increasingly common, are coalescent hidden Markov model (coalHMM) methods, but these methods have lacked general usability and flexibility. We introduce a novel method for automatically learning a coalHMM and inferring the posterior distributions of evolutionary parameters using black-box variational inference, with the transition rates between local genealogies derived empirically by simulation. This derivation enables our method to work directly with three or four taxa and through a divide-and-conquer approach with more taxa. Using a simulated data set resembling a human-chimp-gorilla scenario, we show that our method has comparable or better accuracy to previous coalHMM methods. Both species divergence times and population sizes were accurately inferred. The method also infers local genealogies and we report on their accuracy. Furthermore, we illustrate how to scale the method to larger data sets through a divide-and-conquer approach. This accuracy means our method is useful now, and by deriving transition rates by simulation it is flexible enough to enable future implementations of all kinds of population models.