WB
Wenting Bian
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
1,247
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

A reference map of the human binary protein interactome

Katja Luck et al.Apr 8, 2020
Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype–phenotype relationships1,2. Here we present a human ‘all-by-all’ reference interactome map of human binary protein interactions, or ‘HuRI’. With approximately 53,000 protein–protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein–protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes. A human binary protein interactome map that includes around 53,000 protein–protein interactions involving more than 8,000 proteins provides a reference for the study of human cellular function in health and disease.
2
Citation892
0
Save
33

Binary interactome models of inner- versus outer-complexome organisation

L. Lambourne et al.Mar 17, 2021
Summary Hundreds of different protein complexes that perform important functions across all cellular processes, collectively comprising the “complexome” of an organism, have been identified 1 . However, less is known about the fraction of the interactome that exists outside the complexome, in the “outer-complexome”. To investigate features of “inner”- versus outer-complexome organisation in yeast, we generated a high-quality atlas of binary protein-protein interactions (PPIs), combining three previous maps 2–4 and a new reference all-by-all binary interactome map. A greater proportion of interactions in our map are in the outer-complexome, in comparison to those found by affinity purification followed by mass spectrometry 5–7 or in literature curated datasets 8–11 . In addition, recent advances in deep learning predictions of PPI structures 12 mirror the existing experimentally resolved structures in being largely focused on the inner complexome and missing most interactions in the outer-complexome. Our new PPI network suggests that the outer-complexome contains considerably more PPIs than the inner-complexome, and integration with functional similarity networks 13–15 reveals that interactions in the inner-complexome are highly detectable and correspond to pairs of proteins with high functional similarity, while proteins connected by more transient, harder-to-detect interactions in the outer-complexome, exhibit higher functional heterogeneity.
33
Citation5
0
Save
53

Next-generation large-scale binary protein interaction network for Drosophila

Hong-Wen Tang et al.Aug 3, 2022
Abstract Generating reference maps of the interactome networks underlying most cellular functions can greatly illuminate genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. Here, we applied state-of-the-art experimental and bioinformatics methods to identify high-confidence binary protein-protein interactions (PPIs) for Drosophila melanogaster . We performed four all-by-all yeast two-hybrid (Y2H) screens of >10,000 Drosophila proteins, resulting in the ‘FlyBi’ dataset of 8,723 PPIs among 2,939 proteins. As part of this effort, we tested subsets of our data and data from previous PPI datasets using an orthogonal assay, which allowed us to normalize data quality across datasets. Next, we integrated our FlyBi data with previous PPI data, resulting in an expanded, high-confidence binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6,511 proteins. These data are accessible through the Molecular Interaction Search Tool (MIST) and other databases. To assess the utility of the PPI resource, we used novel interactions from the FlyBi dataset to generate an autophagy interaction network that we validated in vivo using two different autophagy-related assays. We found that deformed wings ( dwg ) encodes a protein that is both a regulator and a target of autophagy. Altogether, the resources generated in this project provide a strong foundation for building high-confidence new hypotheses regarding protein networks and function.
53
Citation1
0
Save
0

A reference map of the human protein interactome

Katja Luck et al.Apr 10, 2019
Global insights into cellular organization and function require comprehensive understanding of interactome networks. Similar to how a reference genome sequence revolutionized human genetics, a reference map of the human interactome network is critical to fully understand genotype-phenotype relationships. Here we present the first human “all-by-all” binary reference interactome map, or “HuRI”. With ~53,000 high-quality protein-protein interactions (PPIs), HuRI is approximately four times larger than the information curated from small-scale studies available in the literature. Integrating HuRI with genome, transcriptome and proteome data enables the study of cellular function within essentially any physiological or pathological cellular context. We demonstrate the use of HuRI in identifying specific subcellular roles of PPIs and protein function modulation via splicing during brain development. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of Mendelian diseases. HuRI thus represents an unprecedented, systematic reference linking genomic variation to phenotypic outcomes.
0

Network-based prediction of protein interactions

I. Kovács et al.Mar 2, 2018
As biological function emerges through interactions between a cell's molecular constituents, understanding cellular mechanisms requires us to catalogue all physical interactions between proteins. Despite spectacular advances in high-throughput mapping, the number of missing human protein-protein interactions (PPIs) continues to exceed the experimentally documented interactions. Computational tools that exploit structural, sequence or network topology information are increasingly used to fill in the gap, using the patterns of the already known interactome to predict undetected, yet biologically relevant interactions. Such network-based link prediction tools rely on the Triadic Closure Principle (TCP), stating that two proteins likely interact if they share multiple interaction partners. TCP is rooted in social network analysis, namely the observation that the more common friends two individuals have, the more likely that they know each other. Here, we offer direct empirical evidence across multiple datasets and organisms that, despite its dominant use in biological link prediction, TCP is not valid for most protein pairs. We show that this failure is fundamental - TCP violates both structural constraints and evolutionary processes. This understanding allows us to propose a link prediction principle, consistent with both structural and evolutionary arguments, that predicts yet uncovered protein interactions based on paths of length three (L3). A systematic computational cross-validation shows that the L3 principle significantly outperforms existing link prediction methods. To experimentally test the L3 predictions, we perform both large-scale high-throughput and pairwise tests, finding that the predicted links test positively at the same rate as previously known interactions, suggesting that most (if not all) predicted interactions are real. Combining L3 predictions with experimental tests provided new interaction partners of FAM161A, a protein linked to retinitis pigmentosa, offering novel insights into the molecular mechanisms that lead to the disease. Because L3 is rooted in a fundamental biological principle, we expect it to have a broad applicability, enabling us to better understand the emergence of biological function under both healthy and pathological conditions.