TH
Tong Hao
Author with expertise in Analysis of Gene Interaction Networks
Dana-Farber Cancer Institute, Harvard University, Tianjin Normal University
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
24
h-index:
58
/
i10-index:
166
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

A map of binary SARS-CoV-2 protein interactions implicates host immune regulation and ubiquitination

Dae-Kyum Kim et al.Oct 24, 2023
+35
C
B
D
ABSTRACT Key steps in viral propagation, immune suppression, and pathology are mediated by direct, binary, physical interactions between viral and host proteins. To understand the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we generated an unbiased systematic map of binary interactions between viral and host proteins, complementing previous co-complex association maps by conveying more direct mechanistic understanding and potentially enabling targeted disruption of direct interactions. To this end, we deployed two parallel strategies, identifying 205 virus-host and 27 intraviral binary interactions amongst 171 host and 19 viral proteins, and confirming high quality of these interactions via a calibrated orthogonal assay. Host proteins interacting with SARS-CoV-2 proteins are enriched in various cellular processes, including immune signaling and inflammation, protein ubiquitination, and membrane trafficking. Specific subnetworks provide new hypotheses related to viral modulation of host protein homeostasis and T-cell regulation. The binary virus-host protein interactions we identified can now be prioritized as targets for therapeutic intervention. More generally, we provide a resource of systematic maps describing which SARS-CoV-2 and human proteins interact directly.
33
Paper
Citation11
0
Save
33

Binary interactome models of inner- versus outer-complexome organisation

L. Lambourne et al.Oct 24, 2023
+36
Y
A
L
Summary Hundreds of different protein complexes that perform important functions across all cellular processes, collectively comprising the “complexome” of an organism, have been identified 1 . However, less is known about the fraction of the interactome that exists outside the complexome, in the “outer-complexome”. To investigate features of “inner”- versus outer-complexome organisation in yeast, we generated a high-quality atlas of binary protein-protein interactions (PPIs), combining three previous maps 2–4 and a new reference all-by-all binary interactome map. A greater proportion of interactions in our map are in the outer-complexome, in comparison to those found by affinity purification followed by mass spectrometry 5–7 or in literature curated datasets 8–11 . In addition, recent advances in deep learning predictions of PPI structures 12 mirror the existing experimentally resolved structures in being largely focused on the inner complexome and missing most interactions in the outer-complexome. Our new PPI network suggests that the outer-complexome contains considerably more PPIs than the inner-complexome, and integration with functional similarity networks 13–15 reveals that interactions in the inner-complexome are highly detectable and correspond to pairs of proteins with high functional similarity, while proteins connected by more transient, harder-to-detect interactions in the outer-complexome, exhibit higher functional heterogeneity.
33
Citation5
0
Save
4

A quantitative mapping approach to identify direct interactions within complexomes

Philipp Trepte et al.Oct 24, 2023
+16
S
C
P
ABSTRACT Complementary methods are required to fully characterize all protein complexes, or the complexome, of a cell. Affinity purification coupled to mass-spectrometry (AP-MS) can identify the composition of complexes at proteome-scale. However, information on direct contacts between subunits is often lacking. In contrast, solving the 3D structure of protein complexes can provide this information, but structural biology techniques are not yet scalable for systematic, proteome-wide efforts. Here, we optimally combine two orthogonal high-throughput binary interaction assays, LuTHy and N2H, and demonstrate that their quantitative readouts can be used to differentiate direct interactions from indirect associations within multiprotein complexes. We also show that LuTHy allows accurate distance measurements between proteins in live cells and apply these findings to study the impact of the polyglutamine expansion mutation on the structurally unresolved N-terminal domain of Huntingtin. Thus, we present a new framework based on quantitative interaction assays to complement structural biology and AP-MS techniques, which should help to provide first-approximation contact maps of multiprotein complexes at proteome-scale. Graphical Abstract
53

Next-generation large-scale binary protein interaction network for Drosophila

Hong-Wen Tang et al.Oct 24, 2023
+37
Y
K
H
Abstract Generating reference maps of the interactome networks underlying most cellular functions can greatly illuminate genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. Here, we applied state-of-the-art experimental and bioinformatics methods to identify high-confidence binary protein-protein interactions (PPIs) for Drosophila melanogaster . We performed four all-by-all yeast two-hybrid (Y2H) screens of >10,000 Drosophila proteins, resulting in the ‘FlyBi’ dataset of 8,723 PPIs among 2,939 proteins. As part of this effort, we tested subsets of our data and data from previous PPI datasets using an orthogonal assay, which allowed us to normalize data quality across datasets. Next, we integrated our FlyBi data with previous PPI data, resulting in an expanded, high-confidence binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6,511 proteins. These data are accessible through the Molecular Interaction Search Tool (MIST) and other databases. To assess the utility of the PPI resource, we used novel interactions from the FlyBi dataset to generate an autophagy interaction network that we validated in vivo using two different autophagy-related assays. We found that deformed wings ( dwg ) encodes a protein that is both a regulator and a target of autophagy. Altogether, the resources generated in this project provide a strong foundation for building high-confidence new hypotheses regarding protein networks and function.
53
Citation2
0
Save
7

Assessment of community efforts to advance computational prediction of protein-protein interactions

Xin Wang et al.Oct 24, 2023
+27
K
L
X
Abstract Comprehensive insights from the human protein-protein interaction (PPI) network, known as the human interactome, can provide important insights into the molecular mechanisms of complex biological processes and diseases. Despite the remarkable experimental efforts undertaken to date to determine the structure of the human interactome, many PPIs remain unmapped. Computational approaches, especially network-based methods, can facilitate the identification of new PPIs. Many such approaches have been proposed. However, a systematic evaluation of existing network-based methods in predicting PPIs is still lacking. Here, we report community efforts initiated by the International Network Medicine Consortium to benchmark the ability of 24 representative network-based methods to predict PPIs across five different interactomes, including a synthetic interactome generated by the duplication-mutation-complementation model, and the interactomes of four different organisms: A. thaliana , C. elegans , S. cerevisiae , and H. sapiens . We selected the top-seven methods through a computational validation on the human interactome. We next experimentally validated their top-500 predicted PPIs (in total 3,276 predicted PPIs) using the yeast two-hybrid assay, finding 1,177 new human PPIs (involving 633 proteins). Our results indicate that task-tailored similarity-based methods, which leverage the underlying network characteristics of PPIs, show superior performance over other general link prediction methods. Through experimental validation, we confirmed that the top-ranking methods show promising performance externally. For example, from the top 500 PPIs predicted by an advanced similarity-base method [MPS(B&T)], 430 were successfully tested by Y2H with 376 testing positive, yielding a precision of 87.4%. These results establish advanced similarity-based methods as powerful tools for the prediction of human PPIs.
7
Citation2
0
Save
1

Expanding the HDAC druggable landscape beyond enzymatic activity

Julien Olivet et al.Oct 24, 2023
+47
S
S
J
ABSTRACT Enzymatic pockets such as those of histone deacetylases (HDACs) are among the most favored targets for drug development. However, enzymatic inhibitors often exhibit low selectivity and high toxicity due to targeting multiple enzyme paralogs, which are often involved in distinct multisubunit complexes. Here, we report the discovery and characterization of a non-enzymatic small molecule inhibitor of HDAC transcriptional repression functions with comparable anti-tumor activity to the enzymatic HDAC inhibitor Vorinostat, and anti-psychedelic activity of an HDAC2 knockout in vivo . We highlight that these phenotypes are achieved while modulating the expression of 20- and 80-fold fewer genes than enzymatic and genetic inhibition in the respective models. Thus, by achieving the same biological outcomes as established therapeutics while impacting a dramatically smaller number of genes, inhibitors of protein-protein interactions can offer important advantages in improving the selectivity of epigenetic modulators. GRAPHICAL ABSTRACT
1
Citation1
0
Save
13

N-terminal proteoforms may engage in different protein complexes

Annelies Bogaert et al.Oct 24, 2023
+8
A
D
A
Abstract Alternative translation initiation and alternative splicing may give rise to N-terminal proteoforms, proteins that differ at their N-terminus compared to their canonical counterparts. Such proteoforms can have altered localizations, stabilities and functions. While proteoforms generated from splice variants can be engaged in different protein complexes, it remained to be studied to what extent this applies to N-terminal proteoforms. To address this, we mapped the interactomes of several pairs of N-terminal proteoforms and their canonical counterparts. First, we generated a catalogue of N-terminal proteoforms found in the HEK293T cellular cytosol from which 22 pairs were selected for interactome profiling. Additionally, we provide evidence for the expression of several N-terminal proteoforms, identified in our catalogue, across different human tissues as well as tissue-specific expression, highlighting their biological relevance. Protein-protein interaction profiling revealed that the overlap of the interactomes for both proteoforms is generally high, showing their functional relation. We also showed that N-terminal proteoforms can be engaged in new interactions and/or lose several interactions compared to their canonical counterpart, thus further expanding the functional diversity of proteomes.
1

Paired yeast one-hybrid assays to detect DNA-binding cooperativity and antagonism across transcription factors

Anna Berenson et al.Oct 24, 2023
+12
L
R
A
ABSTRACT Cooperativity and antagonism between transcription factors (TFs) can drastically modify their binding to regulatory DNA elements. While mapping these relationships between TFs is important for understanding their context-specific functions, existing approaches either rely on DNA binding motif predictions, interrogate one TF at a time, or study individual TFs in parallel. Here, we introduce paired yeast one-hybrid (pY1H) assays to detect cooperativity and antagonism across hundreds of TF-pairs at DNA regions of interest. We provide evidence that a wide variety of TFs are subject to modulation by other TFs in a DNA sequence-specific manner. We also demonstrate that TF-TF relationships are often affected by alternative isoform usage, and identify cooperativity and antagonism between human TFs and viral proteins. pY1H assays provide a broadly applicable framework to study how different functional relationships affect protein occupancy at regulatory DNA regions.
0

A reference map of the human protein interactome

Katja Luck et al.May 6, 2020
+85
L
D
K
Global insights into cellular organization and function require comprehensive understanding of interactome networks. Similar to how a reference genome sequence revolutionized human genetics, a reference map of the human interactome network is critical to fully understand genotype-phenotype relationships. Here we present the first human “all-by-all” binary reference interactome map, or “HuRI”. With ~53,000 high-quality protein-protein interactions (PPIs), HuRI is approximately four times larger than the information curated from small-scale studies available in the literature. Integrating HuRI with genome, transcriptome and proteome data enables the study of cellular function within essentially any physiological or pathological cellular context. We demonstrate the use of HuRI in identifying specific subcellular roles of PPIs and protein function modulation via splicing during brain development. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of Mendelian diseases. HuRI thus represents an unprecedented, systematic reference linking genomic variation to phenotypic outcomes.
0

Comprehensive characterization of protein-protein interaction network perturbations by human disease mutations

Feixiong Cheng et al.Jun 11, 2024
+21
Y
J
F
Abstract Technological and computational advances in genomics and interactomics have made it possible to identify rapidly how disease mutations perturb interaction networks within human cells. In this study, we investigate at large-scale the effects of network perturbations caused by disease mutations within the human three-dimensional (3D), structurally-resolved macromolecular interactome. We show that disease-associated germline mutations are significantly enriched in sequences encoding protein-protein interfaces compared to mutations identified in healthy subjects from the 1000 Genomes and ExAC projects; these interface mutations correspond to protein-protein interaction (PPI)-perturbing alleles including p.Ser127Arg in PCSK9 at the PCSK9-LDLR interface. In addition, somatic missense mutations are significantly enriched in PPI interfaces compared to non-interfaces in 10,861 human exomes across 33 cancer subtypes/types from The Cancer Genome Atlas. Using a binomial statistical model, we computationally identified 470 PPIs harboring a statistically significant excess number of missense mutations at protein-protein interfaces (termed putative oncoPPIs) in pan-cancer analysis. We demonstrate that the oncoPPIs, including histone H4 complex in individual cancer types, are highly correlated with patient survival and drug resistance/sensitivity in human cancer cell lines and patient-derived xenografts. We experimentally validate the network effects of 13 oncoPPIs using a systematic binary interaction assay. We further showed that ALOX5 p.Met146Lys at the ALOX5-MAD1L1 interface and RXRA p.Ser427Phe at the RXRA-PPARG interface promote significant tumor cell growth using cell line-based functional assays, providing a functional proof-of-concept. In summary, if broadly applied, this human 3D interactome network analysis offers a powerful tool for prioritizing alleles with mutations altering PPIs that may contribute to the pathobiology of human diseases, and may offer disease-specific targets for genotype-informed therapeutic discovery.
Load More