JW
Jinzhao Wang
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
10
h-index:
25
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cross-Platform Validation of Neurotransmitter Release Impairments in Schizophrenia Patient-DerivedNRXN1-Mutant Neurons

ChangHui Pak et al.Nov 3, 2020
ABSTRACT Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation predisposing to schizophrenia. Previous studies showed that engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multi-center effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. We show that in neurons that were trans-differentiated from induced pluripotent stem cells derived from three NRXN1 -deletion patients, the same impairment in neurotransmitter release was observed as in engineered NRXN1 -deficient neurons. This impairment manifested as a decrease in spontaneous synaptic events and in evoked synaptic responses, and an alteration in synaptic paired-pulse depression. Nrxn1 -deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1 -binding protein, and were associated with characteristic gene expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.
0
Citation1
0
Save
0

A network of microRNAs acts to promote cell cycle exit and differentiation of human pancreatic endocrine cells

Wen Jin et al.Apr 25, 2019
Pancreatic endocrine cell differentiation is orchestrated by transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been explored system-wide. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA overexpression experiments, and network modeling approaches. This analysis identifies Let-7g, Let-7a, miR-200a, and miR-375 as endocrine-enriched miRNAs with high impact on driving endocrine differentiation-associated gene expression changes. These miRNAs target different sets of transcription factors, which converge on a network of genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming.
0

LSD1-mediated enhancer silencing enables endocrine cell development through attenuation of retinoic acid signalling.

Nicholas Vinckier et al.Aug 1, 2019
Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To identify a possible contribution of cell-intrinsic epigenetic mechanisms to signal-induced transcriptional responses, we manipulated the signalling environment and activity of the histone demethylase LSD1 during stepwise differentiation of gut tube intermediates into pancreatic endocrine cells. Analysis of enhancer and transcriptome landscapes revealed that lineage progression and endocrine cell differentiation requires LSD1-mediated silencing of transiently active retinoic acid (RA)-induced enhancers. In the absence of LSD1, early RA-responsive enhancers remain partially active despite RA removal, resulting in perduring expression of RA-induced genes, and failure to progress in development. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited. Given the requirement for LSD1 in numerous developmental contexts, the here-described mechanism would be broadly relevant.
0

Single cell chromatin accessibility reveals pancreatic islet cell type- and state-specific regulatory programs of diabetes risk

Joshua Chiou et al.Jul 9, 2019
Genetic risk variants for complex, multifactorial diseases are enriched in cis-regulatory elements. Single cell epigenomic technologies create new opportunities to dissect cell type-specific mechanisms of risk variants, yet this approach has not been widely applied to disease-relevant tissues. Given the central role of pancreatic islets in type 2 diabetes (T2D) pathophysiology, we generated accessible chromatin profiles from 14.2k islet cells and identified 13 cell clusters including multiple alpha, beta and delta cell clusters which represented hormone-producing and signal-responsive cell states. We cataloged 244,236 islet cell type accessible chromatin sites and identified transcription factors (TFs) underlying both lineage- and state-specific regulation. We measured the enrichment of T2D and glycemic trait GWAS for the accessible chromatin profiles of single cells, which revealed heterogeneity in the effects of beta cell states and TFs on fasting glucose and T2D risk. We further used machine learning to predict the cell type-specific regulatory function of genetic variants, and single cell co-accessibility to link distal sites to putative cell type-specific target genes. We localized 239 fine-mapped T2D risk signals to islet accessible chromatin, and further prioritized variants at these signals with predicted regulatory function and co-accessibility with target genes. At the KCNQ1 locus, the causal T2D variant rs231361 had predicted effects on an enhancer with beta cell-specific, long-range co-accessibility to the insulin promoter, and deletion of this enhancer reduced insulin gene and protein expression in human embryonic stem cell-derived beta cells. Our findings provide a cell type- and state-resolved map of gene regulation in human islets, illuminate likely mechanisms of T2D risk at hundreds of loci, and demonstrate the power of single cell epigenomics for interpreting complex disease genetics.