MF
Michael Frank
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
50
(72% Open Access)
Cited by:
14,807
h-index:
92
/
i10-index:
204
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism

Michael Frank et al.Nov 5, 2004
R
L
M
To what extent do we learn from the positive versus negative outcomes of our decisions? The neuromodulator dopamine plays a key role in these reinforcement learning processes. Patients with Parkinson's disease, who have depleted dopamine in the basal ganglia, are impaired in tasks that require learning from trial and error. Here, we show, using two cognitive procedural learning tasks, that Parkinson's patients off medication are better at learning to avoid choices that lead to negative outcomes than they are at learning from positive outcomes. Dopamine medication reverses this bias, making patients more sensitive to positive than negative outcomes. This pattern was predicted by our biologically based computational model of basal ganglia–dopamine interactions in cognition, which has separate pathways for “Go” and “NoGo” responses that are differentially modulated by positive and negative reinforcement.
0

Hold Your Horses: Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism

Michael Frank et al.Oct 25, 2007
S
A
J
M
Deep brain stimulation (DBS) of the subthalamic nucleus markedly improves the motor symptoms of Parkinson's disease, but causes cognitive side effects such as impulsivity. We showed that DBS selectively interferes with the normal ability to slow down when faced with decision conflict. While on DBS, patients actually sped up their decisions under high-conflict conditions. This form of impulsivity was not affected by dopaminergic medication status. Instead, medication impaired patients' ability to learn from negative decision outcomes. These findings implicate independent mechanisms leading to impulsivity in treated Parkinson's patients and were predicted by a single neurocomputational model of the basal ganglia.
0

Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia

Randall O’Reilly et al.Dec 10, 2005
M
R
The prefrontal cortex has long been thought to subserve both working memory (the holding of information online for processing) and executive functions (deciding how to manipulate working memory and perform processing). Although many computational models of working memory have been developed, the mechanistic basis of executive function remains elusive, often amounting to a homunculus. This article presents an attempt to deconstruct this homunculus through powerful learning mechanisms that allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strategic, task-appropriate manner. These learning mechanisms are based on subcortical structures in the midbrain, basal ganglia, and amygdala, which together form an actor-critic architecture. The critic system learns which prefrontal representations are task relevant and trains the actor, which in turn provides a dynamic gating mechanism for controlling working memory updating. Computationally, the learning mechanism is designed to simultaneously solve the temporal and structural credit assignment problems. The model's performance compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging 1-2-AX working memory task and other benchmark working memory tasks.
0

Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI

Adam Aron et al.Apr 4, 2007
+2
S
T
A
The ability to stop motor responses depends critically on the right inferior frontal cortex (IFC) and also engages a midbrain region consistent with the subthalamic nucleus (STN). Here we used diffusion-weighted imaging (DWI) tractography to show that the IFC and the STN region are connected via a white matter tract, which could underlie a “hyperdirect” pathway for basal ganglia control. Using a novel method of “triangulation” analysis of tractography data, we also found that both the IFC and the STN region are connected with the presupplementary motor area (preSMA). We hypothesized that the preSMA could play a conflict detection/resolution role within a network between the preSMA, the IFC, and the STN region. A second experiment tested this idea with functional magnetic resonance imaging (fMRI) using a conditional stop-signal paradigm, enabling examination of behavioral and neural signatures of conflict-induced slowing. The preSMA, IFC, and STN region were significantly activated the greater the conflict-induced slowing. Activation corresponded strongly with spatial foci predicted by the DWI tract analysis, as well as with foci activated by complete response inhibition. The results illustrate how tractography can reveal connections that are verifiable with fMRI. The results also demonstrate a three-way functional–anatomical network in the right hemisphere that could either brake or completely stop responses.
0

Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism

Michael FrankJan 1, 2005
M
Abstract Dopamine (DA) depletion in the basal ganglia (BG) of Parkinson's patients gives rise to both frontal-like and implicit learning impairments. Dopaminergic medication alleviates some cognitive deficits but impairs those that depend on intact areas of the BG, apparently due to DA “overdose.” These findings are difficult to accommodate with verbal theories of BG/DA function, owing to complexity of system dynamics: DA dynamically modulates function in the BG, which is itself a modulatory system. This article presents a neural network model that instantiates key biological properties and provides insight into the underlying role of DA in the BG during learning and execution of cognitive tasks. Specifically, the BG modulates the execution of “actions” (e.g., motor responses and working memory updating) being considered in different parts of the frontal cortex. Phasic changes in DA, which occur during error feedback, dynamically modulate the BG threshold for facilitating/suppressing a cortical command in response to particular stimuli. Reduced dynamic range of DA explains Parkinson and DA overdose deficits with a single underlying dysfunction, despite overall differences in raw DA levels. Simulated Parkinsonism and medication effects provide a theoretical basis for behavioral data in probabilistic classification and reversal tasks. The model also provides novel testable predictions for neuropsychological and pharmacological studies, and motivates further investigation of BG/DA interactions with the prefrontal cortex in working memory.
0

Interactions between frontal cortex and basal ganglia in working memory: A computational model

Michael Frank et al.Jun 1, 2001
R
B
M
The frontal cortex and the basal ganglia interact via a relatively well understood and elaborate system of interconnections. In the context of motor function, these interconnections can be understood as disinhibiting, or “releasing the brakes,” on frontal motor action plans: The basal ganglia detect appropriate contexts for performing motor actions and enable the frontal cortex to execute such actions at the appropriate time. We build on this idea in the domain of working memory through the use of computational neural network models of this circuit. In our model, the frontal cortex exhibits robust active maintenance, whereas the basal ganglia contribute a selective, dynamic gating function that enables frontal memory representations to be rapidly updated in a task-relevant manner. We apply the model to a novel version of the continuous performance task that requires subroutine-like selective working memory updating and compare and contrast our model with other existing models and theories of frontal-cortex-basal-ganglia interactions.
0

Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning

Michael Frank et al.Oct 4, 2007
+2
H
A
M
What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.
0

Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making

Michael FrankSep 13, 2006
M
The basal ganglia (BG) coordinate decision making processes by facilitating adaptive frontal motor commands while suppressing others. In previous work, neural network simulations accounted for response selection deficits associated with BG dopamine depletion in Parkinson’s disease. Novel predictions from this model have been subsequently confirmed in Parkinson patients and in healthy participants under pharmacological challenge. Nevertheless, one clear limitation of that model is in its omission of the subthalamic nucleus (STN), a key BG structure that participates in both motor and cognitive processes. The present model incorporates the STN and shows that by modulating when a response is executed, the STN reduces premature responding and therefore has substantial effects on which response is ultimately selected, particularly when there are multiple competing responses. Increased cortical response conflict leads to dynamic adjustments in response thresholds via cortico-subthalamic-pallidal pathways. The model accurately captures the dynamics of activity in various BG areas during response selection. Simulated dopamine depletion results in emergent oscillatory activity in BG structures, which has been linked with Parkinson’s tremor. Finally, the model accounts for the beneficial effects of STN lesions on these oscillations, but suggests that this benefit may come at the expense of impaired decision making.
0
Citation675
0
Save
0

Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold

James Cavanagh et al.Sep 25, 2011
+4
M
T
J
One mechanism by which medial prefontal cortex (mPFC) exerts cognitive control is thought to involve the subthalamic nucleus (STN), which acts as a temporary brake on behavior. Here the authors found increases in mPFC and STN theta power as a function of decision conflict. Increases in mPFC theta power predicted increased decision thresholds. STN deep brain stimulation reversed this relationship, resulting in impulsive choice. It takes effort and time to tame one's impulses. Although medial prefrontal cortex (mPFC) is broadly implicated in effortful control over behavior, the subthalamic nucleus (STN) is specifically thought to contribute by acting as a brake on cortico-striatal function during decision conflict, buying time until the right decision can be made. Using the drift diffusion model of decision making, we found that trial-to-trial increases in mPFC activity (EEG theta power, 4–8 Hz) were related to an increased threshold for evidence accumulation (decision threshold) as a function of conflict. Deep brain stimulation of the STN in individuals with Parkinson's disease reversed this relationship, resulting in impulsive choice. In addition, intracranial recordings of the STN area revealed increased activity (2.5–5 Hz) during these same high-conflict decisions. Activity in these slow frequency bands may reflect a neural substrate for cortico–basal ganglia communication regulating decision processes.
0

Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation

Michael Frank et al.Jul 20, 2009
F
J
B
M
The exploration/exploitation dilemma describes the choice between maintaining the current strategy, or trying new strategies, to maximize rewards. The authors show that genes controlling striatal dopamine function are associated with exploitative learning. In contrast, a gene controlling prefrontal dopamine function is predictive of exploration when the value of alternative strategies is uncertain. The basal ganglia support learning to exploit decisions that have yielded positive outcomes in the past. In contrast, limited evidence implicates the prefrontal cortex in the process of making strategic exploratory decisions when the magnitude of potential outcomes is unknown. Here we examine neurogenetic contributions to individual differences in these distinct aspects of motivated human behavior, using a temporal decision-making task and computational analysis. We show that two genes controlling striatal dopamine function, DARPP-32 (also called PPP1R1B) and DRD2, are associated with exploitative learning to adjust response times incrementally as a function of positive and negative decision outcomes. In contrast, a gene primarily controlling prefrontal dopamine function (COMT) is associated with a particular type of 'directed exploration', in which exploratory decisions are made in proportion to Bayesian uncertainty about whether other choices might produce outcomes that are better than the status quo. Quantitative model fits reveal that genetic factors modulate independent parameters of a reinforcement learning system.
0
Citation478
0
Save
Load More