AH
Allen Hsu
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
1,566
h-index:
23
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition

Yumeng Shi et al.Sep 2, 2010
+10
X
C
Y
In this contribution we demonstrate a method of synthesizing a hexagonal boron nitride (h-BN) thin film by ambient pressure chemical vapor deposition on polycrystalline Ni films. Depending on the growth conditions, the thickness of the obtained h-BN film is between ∼5 and 50 nm. The h-BN grows continuously on the entire Ni surface and the region with uniform thickness can be up to 20 μm in lateral size which is only limited by the size of the Ni single crystal grains. The hexagonal structure was confirmed by both electron and X-ray diffraction. X-ray photoelectron spectroscopy shows the B/N atomic ratio to be 1:1.12. A large optical band gap (5.92 eV) was obtained from the photoabsorption spectra which suggest the potential usage of this h-BN film in optoelectronic devices.
1

Controlling the SARS-CoV-2 spike glycoprotein conformation

Rory Henderson et al.Jul 22, 2020
+10
K
R
R
The coronavirus (CoV) spike (S) protein, involved in viral–host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different β-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications. The SARS-CoV-2 spike glycoprotein is flexible, and its receptor-binding domain (RBD) fluctuates between up or down conformations. Mutations engineered into the spike ectodomain either lock the RBD in the down state or make it adopt the up conformation more readily.
1
Citation418
0
Save
1

Cryo-EM Structures of the SARS-CoV-2 Endoribonuclease Nsp15

Monica Pillon et al.Aug 11, 2020
+14
M
L
M
Abstract New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.
1
Citation7
0
Save
0

Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel

Ying Yin et al.Jan 9, 2019
+4
M
A
Y
Abstract The calcium-permeable transient receptor potential melastatin 2 (TRPM2) channel plays a key role in redox sensation in many cell types 1–3 . Channel activation requires binding of both ADP-ribose (ADPR) 2,4–6 and Ca 2+ 7 . The recently published TRPM2 structures from Danio rerio in the ligand-free and in the ADPR/Ca 2+ -bound conditions represent the channel in closed and open states, which uncover substantial tertiary and quaternary conformational rearrangements 8 . However, it is unclear how these rearrangements occur within the tetrameric channel during channel gating. Here we report two cryo-electron microscopy structures of TRPM2 from the same species in complex with Ca 2+ alone, and with both ADPR and Ca 2+ , determined to an overall resolution of ~3.8 Å and ~4.2 Å respectively. In comparison with the published results, our studies capture TRPM2 in two-fold symmetric intermediate states, offering a glimpse of the structural transitions within the tetramer that bridge the closed and open conformations.
0
Citation5
0
Save
0

Fab-dimerized glycan-reactive antibodies neutralize HIV and are prevalent in humans and rhesus macaques

Wilton Williams et al.Jun 30, 2020
+40
Y
R
W
Summary The HIV-1 envelope (Env) is comprised by mass of over 50% glycans. A goal of HIV-1 vaccine development is the induction of Env glycan-reactive broadly neutralizing antibodies (bnAbs). The 2G12 bnAb recognizes an Env glycan cluster using a unique variable heavy (V H ) domain-swapped conformation that results in fragment antigen-binding (Fab) dimerization. Here we describe Fab-dimerized glycan (FDG)-reactive antibodies without V H -swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques that neutralized heterologous HIV-1 isolates. FDG precursors were boosted by vaccination in macaques, and were present in HIV-1-naïve humans with an average estimated frequency of one per 340,000 B cells. These data demonstrate frequent HIV-1 Env glycan-reactive bnAb B cell precursors in macaques and humans and reveal a novel strategy for their induction by vaccination. Highlights Discovery of Fab-dimerized HIV-1 glycan-reactive antibodies with a non-domain-swapped architecture Fab-dimerized antibodies neutralize heterologous HIV-1 isolates. Antibodies with this architecture can be elicited by vaccination in macaques. Fab-dimerized antibodies are found in HIV-1 naïve humans.
0
Citation4
0
Save
0

Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans : A target for antifungals

E. Washington et al.Jul 31, 2024
+8
A
Y
E
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length
0
Citation1
0
Save
18

Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogenCryptococcus neoformans: a target for novel antifungals

E. Washington et al.Mar 14, 2023
+6
A
Y
E
Abstract Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies residues required for substrate-binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the “solvent” but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto , these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes. Significance Statement Fungal infections are responsible for over a million deaths worldwide each year. Biosynthesis of a disaccharide, trehalose, is required for multiple pathogenic fungi to transition from the environment to the human host. Enzymes in the trehalose biosynthesis pathway are absent in humans and, therefore, are potentially significant targets for novel antifungal therapeutics. One enzyme in the trehalose biosynthesis is trehalose-6-phosphate synthase (Tps1). Here, we describe the cryo-electron microscopy structures of the CnTps1 homo-tetramer in the unliganded form and in complex with a substrate and a product. These structures and subsequent biochemical analysis reveal key details of substrate-binding residues and substrate specificity. These structures should facilitate structure-guided design of inhibitors against CnTps1.
18
Citation1
0
Save
0

Structural basis for activation of Dot1L methyltransferase on the nucleosome by histone H2BK120 ubiquitylation

Cathy Anderson et al.Dec 20, 2018
+5
M
C
C
Histone H3 lysine 79 (H3K79) methylation is enriched on actively transcribed genes, and its misregulation is a hallmark of leukemia. Methylation of H3K79, which resides on the structured disk face of the nucleosome, is mediated by the Dot1L methyltransferase. Dot1L activity is part of a trans-histone crosstalk pathway, requiring prior histone H2B ubiquitylation of lysine 120 (H2BK120ub) for optimal activity. However, the molecular details describing both how Dot1L binds to the nucleosome and why Dot1L is activated by H2BK120 ubiquitylation are unknown. Here we present the cryo-EM structure of Dot1L bound to a nucleosome reconstituted with a site-specifically ubiquitylated H2BK120. The structure reveals that Dot1L engages the nucleosome acidic patch using an arginine anchor and occupies a conformation poised for methylation. Ubiquitin directly interacts with Dot1L and is positioned as a clamp on the nucleosome interacting region of Dot1L. Using our structure, we identify point mutations that disrupt the nucleosome-specific and ubiquitin-dependent activities of Dot1L. This study establishes a path to better understand Dot1L function in normal and leukemia cells.
0

Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes

Lejla Zubcevic et al.Feb 8, 2019
S
M
A
L
The Transient Receptor Potential Vanilloid 2 (TRPV2) channel is a member of the temperature-sensing thermoTRPV family. Recent advances in cryo-electronmicroscopy (cryo-EM) and X-ray crystallography have provided many important insights into the gating mechanisms of thermoTRPV channels. Interestingly, crystallographic studies of ligand-dependent TRPV2 gating have shown that the TRPV2 channel adopts two-fold symmetric arrangements during the gating cycle. However, it was unclear if crystal packing forces played a role in stabilizing the two-fold symmetric arrangement of the channel. Here we employ cryo-EM to elucidate the structure of full-length rabbit TRPV2 in complex with the agonist resiniferatoxin (RTx) in nanodiscs and amphipol. We show that RTx induces two-fold symmetric conformations of TRPV2 in both environments. However, the two-fold symmetry is more pronounced in the native-like lipid environment of the nanodiscs. Our data offers insights into a gating pathway in TRPV2 involving symmetry transitions.
28

Controlling the SARS-CoV-2 Spike Glycoprotein Conformation

Rory Henderson et al.May 18, 2020
+9
K
R
R
Abstract The coronavirus (CoV) viral host cell fusion spike (S) protein is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. We found that despite overall similarity in domain organization, different β-CoV strains display distinct S-protein configurations. Based on this analysis, we developed two soluble ectodomain constructs in which the highly immunogenic and mobile receptor binding domain (RBD) is locked in either the all-RBDs ‘down’ position or is induced to display a previously unobserved in SARS-CoV-2 2-RBDs ‘up’ configuration. These results demonstrate that the conformation of the S-protein can be controlled via rational design and provide a framework for the development of engineered coronavirus spike proteins for vaccine applications.
Load More