AT
Andreas Tsouris
Author with expertise in Genomic Expression and Function in Yeast Organism
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
32
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
126

Genomic stability and adaptation of beer brewing yeasts during serial repitching in the brewery

Christopher Large et al.Jun 29, 2020
Abstract Ale brewing yeast are the result of admixture between diverse strains of Saccharomyces cerevisiae , resulting in a heterozygous tetraploid that has since undergone numerous genomic rearrangements. As a result, comparisons between the genomes of modern related ale brewing strains show both extensive aneuploidy and mitotic recombination that has resulted in a loss of intragenomic diversity. Similar patterns of intraspecific admixture and subsequent selection for one haplotype have been seen in many domesticated crops, potentially reflecting a general pattern of domestication syndrome between these systems. We set out to explore the evolution of the ale brewing yeast, to understand both polyploid evolution and the process of domestication in the ecologically relevant environment of the brewery. Utilizing a common brewery practice known as ‘repitching’, in which yeasts are reused over multiple beer fermentations, we generated population time courses from multiple breweries utilizing similar strains of ale yeast. Applying whole-genome sequencing to the time courses, we have found that the same structural variations in the form of aneuploidy and mitotic recombination of particular chromosomes reproducibly rise to detectable frequency during adaptation to brewing conditions across multiple related strains in different breweries. Our results demonstrate that domestication of ale strains is an ongoing process and will likely continue to occur as modern brewing practices develop.
126
Citation22
0
Save
45

High-throughput functional analysis of natural variants in yeast

Yeh Cc et al.Feb 26, 2021
Abstract How natural variation affects phenotype is difficult to determine given our incomplete ability to deduce the functional impact of the polymorphisms detected in a population. Although current computational and experimental tools can predict and measure allele function, there has previously been no assay that does so in a high-throughput manner while also representing haplotypes derived from wild populations. Here, we present such an assay that measures the fitness of hundreds of natural alleles of a given gene without site-directed mutagenesis or DNA synthesis. With a large collection of diverse Saccharomyces cerevisiae natural isolates, we piloted this technique using the gene SUL1 , which encodes a high-affinity sulfate permease that, at increased copy number, can improve the fitness of cells grown in sulfate-limited media. We cloned and barcoded all alleles from a collection of over 1000 natural isolates en masse and matched barcodes with their respective variants using PacBio long-read sequencing and a novel error-correction algorithm. We then transformed the reference S288C strain with this library and used barcode sequencing to track growth ability in sulfate limitation of lineages carrying each allele. We show that this approach allows us to measure the fitness conferred by each allele and stratify functional and nonfunctional alleles. Additionally, we pinpoint which polymorphisms in both coding and noncoding regions are detrimental to fitness or are of small effect and result in intermediate phenotypes. Integrating these results with a phylogenetic tree, we observe how often loss-of-function occurs and whether or not there is an evolutionary pattern to our observable phenotypic results. This approach is easily applicable to other genes. Our results complement classic genotype-phenotype mapping strategies and demonstrate a high-throughput approach for understanding the effects of polymorphisms across an entire species which can greatly propel future investigations into quantitative traits.
45
Citation3
0
Save
0

Diallel panel reveals a significant impact of low-frequency genetic variants on gene expression variation in yeast

Andreas Tsouris et al.Jul 22, 2023
Abstract Unraveling the genetic sources of gene expression variation is essential to better understand the origins of phenotypic diversity in natural populations. Genome-wide association studies identified thousands of variants involved in gene expression variation, however, variants detected only explain part of the heritability. In fact, variants such as low-frequency and structural variants (SVs) are poorly captured in association studies. To assess the impact of these variants on gene expression variation, we explored a half-diallel panel composed of 323 hybrids originated from pairwise crosses of 26 natural Saccharomyces cerevisiae isolates. Using short- and long-read sequencing strategies, we established an exhaustive catalog of single nucleotide polymorphisms (SNPs) and SVs for this panel. Combining this dataset with the transcriptomes of all hybrids, we comprehensively mapped SNPs and SVs associated with gene expression variation. While SVs impact gene expression variation, SNPs exhibit a higher effect size with an overrepresentation of low-frequency variants compared to common ones. These results reinforce the importance of dissecting the heritability of complex traits with a comprehensive catalog of genetic variants at the population level.
0
Citation1
0
Save
1

Contrasting genomic evolution between domesticated and wild Kluyveromyces lactis yeast populations

Anne Friedrich et al.Sep 3, 2022
Abstract The process of domestication has variable consequences on genome evolution leading to different phenotypic signatures. Access to the complete genome sequences of a large number of individuals makes it possible to explore the different facets of this domestication process. Here, we sought to explore the genome evolution of the Kluyveromyces lactis yeast species, a well-known species for its involvement in dairy processes but also present in natural environments. Using a combination of short and long-read sequencing strategies, we investigated the genomic variability of 41 Kluyveromyces lactis isolates and found that the overall genetic diversity of this species is very high (π = 2.9 x 10 -2 ) compared to other species such as Saccharomyces cerevisiae (π = 3 x 10 -3 ). However, the domesticated dairy population shows a reduced level of diversity ( π = 7 x 10 -4 ), probably due to a domestication bottleneck. In addition, this entire population is characterized by the introgression of the LAC4 and LAC12 genes, responsible for lactose fermentation and coming from the closely related species, Kluyveromyces marxianus , as previously described. Our results also highlighted that the LAC4/LAC12 gene cluster was acquired through multiple and independent introgression events. Finally, we also identified several genes that could play a role in adaptation to dairy environments through copy number variation. These genes are involved in sugar consumption, flocculation and drug resistance, and may play a role in dairy processes. Overall, our study illustrates contrasting genomic evolution and sheds new light on the impact of domestication processes on it.
1
Citation1
0
Save
10

Non-additive genetic components contribute significantly to population-wide gene expression variation

Andreas Tsouris et al.Jul 25, 2023
Summary Gene expression variation, an essential step between genomic variation and phenotypic landscape, is collectively controlled by local ( cis ) and distant ( trans ) regulatory changes. Nevertheless, how these regulatory elements differentially influence the heritability of expression traits remains unclear. Here, we bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids originated from genetically divergent yeast isolates. We estimated the broad- and narrow-sense heritability across 5,087 transcript abundance traits and showed that non-additive components account for 36% of the phenotypic variance on average. By comparing allelic expression ratios in the hybrid and the corresponding parental pair, we identified regulatory changes in 25% of all cases, with a majority acting in trans . We further showed that trans- regulation could underlie coordinated expression variation across highly connected genes, resulting in significantly higher non-additive variance and most likely in some of the missing heritability of gene expression traits. Highlights Diallel panel for dissecting genetic components underlying gene expression variation Non-additive components account for 36% of gene expression trait heritability Most cis- regulatory variation is buffered by additional trans -acting variants Genes under trans- regulation show high non-additive variance and functional coherence