RR
Raúl Rodríguez‐Cruces
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(79% Open Access)
Cited by:
496
h-index:
21
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

Christopher Whelan et al.Nov 29, 2017
Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.
0
Citation409
0
Save
69

An Open MRI Dataset for Multiscale Neuroscience

Jessica Royer et al.Aug 5, 2021
A bstract Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54±5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from i) resting-state functional imaging, ii) diffusion tractography, iii) microstructure covariance analysis, and iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and macroscale function. MICA-MICs is available on the Canadian Open Neuroscience Platform’s data portal ( https://portal.conp.ca ).
54

Long-range connections mirror and link microarchitectural and cognitive hierarchies in the human brain

Yezhou Wang et al.Oct 26, 2021
A bstract Core features of higher-order cognition are hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, these connections are biologically expensive, and it is unknown how the computational advantages long-range connections provide overcome the associated wiring costs. Our study investigated this question by exploring the relationship between long-range functional connections and local cortical microarchitecture. Specifically, our work (i) profiled distant cortical connectivity using resting-state fMRI and cortico-cortical geodesic distance mapping, (ii) assessed how long-range connections reflect local brain microarchitecture, and (iii) studied the microarchitectural similarity of regions connected through long-range connections. Analysis of two independent datasets indicated that sensory and motor areas had more clustered short-range connectivity patterns, while transmodal association cortices, including regions of the default mode network, were characterized by distributed, long-range connections. Confirmatory meta-analysis suggested that this topographical difference mirrored a shift in cognitive function, from perception/action towards emotional and social cognitive processing. Analysis of myelin-sensitive in vivo MRI in the same participants as well as post mortem histology and gene expression established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Moreover, long-range connections were found to link together spatially remote regions of association cortex with an unexpectedly similar microarchitecture. These findings provide novel insights into how the organization of distributed functional networks in transmodal association cortex contribute to cognition, because they suggest that long-range connections link together distant islands of association cortex with similar microstructural features.
82

Micapipe: A Pipeline for Multimodal Neuroimaging and Connectome Analysis

Raúl Rodríguez‐Cruces et al.Feb 2, 2022
A bstract Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain structure, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and different spatial scales. Here, we present micapipe , an open processing pipeline for BIDS-conform multimodal MRI datasets. micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. These matrices are routinely generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe , documented at https://micapipe.readthedocs.io/ , and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/ . We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, and connectivity.
20

An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization

Bo‐yong Park et al.Jun 23, 2020
A bstract Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes with the strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development. I mpact Manifold learning of longitudinal brain network data provides novel insights into adolescent structural connectome maturation, and how multiple scales of cortical and subcortical organization interact in typical neurodevelopment.
1

Network-based atrophy modelling in the common epilepsies: a worldwide ENIGMA study

Sara Larivière et al.May 5, 2020
SUMMARY Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1,021 adults with epilepsy compared to 1,564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy co-localized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Indices of progressive atrophy further revealed a strong influence of connectome architecture on disease progression in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients, and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided novel insights into the macroscale features that shape the pathophysiology of common epilepsies.
15

Perceptual coupling and decoupling of the default mode network during mind-wandering and reading

Meichao Zhang et al.Oct 3, 2020
Abstract While reading, the mind can wander to unrelated autobiographical information, creating a perceptually-decoupled state detrimental to narrative comprehension. To understand how this mind-wandering state emerges, we asked whether retrieving autobiographical content necessitates functional disengagement from visual input. In Experiment 1, brain activity was recorded using functional magnetic resonance imaging (fMRI) in an experimental situation mimicking naturally occurring mind-wandering, allowing us to precisely delineate neural regions involved in memory and reading. Individuals read expository texts and ignored personally relevant autobiographical memories, as well as the opposite situation. Medial regions of the default mode network (DMN) were recruited during memory retrieval. In contrast, left temporal and lateral prefrontal regions of the DMN, as well as ventral visual cortex, were recruited when reading for comprehension. Experiment 2 used functional connectivity at rest to establish that (i) DMN regions linked to memory are more functionally decoupled from regions of ventral visual cortex than regions in the same network engaged when reading, and (ii) individuals reporting more mind-wandering and worse comprehension, while reading in the lab, showed increased functional decoupling between visually-connected DMN sites important for reading and a region of dorsal occipital cortex linked to autobiographical memory in Experiment 1. These data suggest we lose track of the narrative when our mind wanders because the generation of autobiographical mental content relies on cortical regions within the DMN which are functionally decoupled from ventral visual regions engaged during reading. Significance statement When the mind wanders during reading, we lose track of information from the narrative. We hypothesised that poor comprehension occurs because retrieving autobiographical memories reduces the perceptual coupling necessary to understand written words. We show that default mode network (DMN) areas involved in reading are functionally more connected to ventral visual regions than DMN regions important for autobiographical memory. Furthermore, individuals who mind-wander more, and comprehend less, have weaker connectivity between visually-coupled DMN regions linked to reading and dorsal occipital areas linked to autobiographical memory. These data suggest that when our minds wander during reading, retrieval of personally-relevant information activates DMN regions that are functionally disconnected from visual input, creating a perceptually decoupled state detrimental to comprehension.
15
Citation4
0
Save
25

Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy

Jessica Royer et al.Nov 1, 2022
Abstract Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a contracted gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post mortem dataset, we observed that in vivo findings reflected topographical variations in cortical lamination patterns, confirming that TLE-related changes in the microstructural gradient reflected increased proximity of regions with more dissimilar laminar structure. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm, and correlated with inter-individual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a parsimonious explanation for functional network reorganization and cognitive dysfunction characteristic of TLE.
1

Cerebral perfusion alterations in temporal lobe epilepsy: Structural underpinnings and network disruptions

Alexander Ngo et al.Aug 24, 2023
A bstract O bjective Neuroimaging has been the prevailing method to study brain networks in temporal lobe epilepsy (TLE), showing widespread alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. M ethods We studied 24 individuals with pharmaco-resistant TLE and 38 healthy adults using multimodal 3T magnetic resonance imaging. We compared regional CBF changes in patients relative to controls and related our perfusion findings to morphological and microstructural metrics. We further probed inter-regional vascular networks in TLE, using graph theoretical CBF covariance analysis. Finally, we assessed the effects of disease duration to study progressive changes. R esults Compared to controls, individuals with TLE showed widespread CBF reductions, predominantly in fronto-temporal regions, with 83% of patients showing more marked decreases ipsilateral than contralateral to the seizure focus. Parallel structural profiling and network-based models showed that cerebral hypoperfusion may be partly constrained by grey and white matter changes and topologically segregated from whole-brain perfusion networks. Negative effects of progressive disease duration further targeted regional CBF profiles in patients. Findings were confirmed in a subgroup of patients who remained seizure-free after surgery. I nterpretation Our multimodal findings provide insights into vascular contributions to TLE pathophysiology and highlight their clinical potential in seizure lateralization.
Load More