PM
Paul Matthews
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
78
(65% Open Access)
Cited by:
58,277
h-index:
144
/
i10-index:
440
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data

Stephen Smith et al.Apr 20, 2006
There has been much recent interest in using magnetic resonance diffusion imaging to provide information about anatomical connectivity in the brain, by measuring the anisotropic diffusion of water in white matter tracts. One of the measures most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies how strongly directional the local tract structure is. Many imaging studies are starting to use FA images in voxelwise statistical analyses, in order to localise brain changes related to development, degeneration and disease. However, optimal analysis is compromised by the use of standard registration algorithms; there has not to date been a satisfactory solution to the question of how to align FA images from multiple subjects in a way that allows for valid conclusions to be drawn from the subsequent voxelwise analysis. Furthermore, the arbitrariness of the choice of spatial smoothing extent has not yet been resolved. In this paper, we present a new method that aims to solve these issues via (a) carefully tuned non-linear registration, followed by (b) projection onto an alignment-invariant tract representation (the “mean FA skeleton”). We refer to this new approach as Tract-Based Spatial Statistics (TBSS). TBSS aims to improve the sensitivity, objectivity and interpretability of analysis of multi-subject diffusion imaging studies. We describe TBSS in detail and present example TBSS results from several diffusion imaging studies.
0

Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk

Georg Ehret et al.Sep 9, 2011
Compared to other common complex diseases, it has proved remarkably difficult to establish the genetic basis of blood-pressure elevation. A multi-stage genome-wide association study involving 200,000 individuals of European descent provides some of the missing detail in the genetic picture. The study identified 16 relevant loci, of which only 6 contain genes previously known or suspected to regulate blood pressure. An association was found between hypertension, the thickness of the left ventricular wall, stroke and coronary artery disease, but not kidney disease or kidney function. Comparison with data from more than 75,000 people of East Asian, South Asian and African ancestries confirmed that many of the variants identified in European-ancestry subjects also influence blood pressure in other populations. Blood pressure is a heritable trait1 influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure)2. Even small increments in blood pressure are associated with an increased risk of cardiovascular events3. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3–GUCY1B3, NPR3–C5orf23, ADM, FURIN–FES, GOSR2, GNAS–EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
0
Citation1,948
0
Save
0

Multimodal population brain imaging in the UK Biobank prospective epidemiological study

Karla Miller et al.Sep 19, 2016
The UK Biobank combines detailed phenotyping and genotyping with tracking of long-term health outcomes in a large cohort. This study describes the recently launched brain-imaging component that will ultimately scan 100,000 individuals. Results from the first 5,000 subjects are reported, including thousands of associations, population modes and hypothesis-driven results. Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank.
0

Large recurrent microdeletions associated with schizophrenia

Hreinn Stefánsson et al.Jul 30, 2008
The genetics of schizophrenia and other mental disorders are complex and poorly understood, and made even harder to study because reduced reproduction rates result in negative selection pressure on risk alleles. To date, some copy number variations have been linked to schizophrenia but the studies have been relatively small. Now two independent large-scale genome-wide studies of thousands of patients and controls by two international consortia confirm a previously identified locus but also reveal novel associations. In the first study, a collaboration between SGENE and partners, de novo (spontaneous) copy number variants are reported on chromosomes 1 and 15. In the second study, by the International Schizophrenia Consortium, deletions were also reported on these chromosomes, as was greater overall frequency of copy number variation in the genome. The genetics of schizophrenia and other mental disorders are complex and poorly understood, and made even harder to study due to reduced reproduction resulting in negative selection pressure on risk alleles. Two independent large-scale genome wide studies of thousands of patients and controls by two international consortia confirm a previously identified locus, but also reveal novel associations. In this study, de novo (spontaneous) copy number variants are reported on chromosomes 1 and 15. Reduced fecundity, associated with severe mental disorders1, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism2, schizophrenia3 and mental retardation4. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation4,5 and autism2. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
0
Citation1,745
0
Save
0

Common variants conferring risk of schizophrenia

Hreinn Stefánsson et al.Jul 1, 2009
Based on its symptoms, schizophrenia has been considered a discrete disease, and yet genome-wide association studies for copy number variations (CNVs) associated with the disease have revealed that some CNVs confer high relative risk of schizophrenia but also of other psychiatric disorders. But CNVs can affect several genes. Now, a genome-wide association of single nucleotide polymorphisms (SNPs) using data from several large genome-wide scans reveals significant associations to individual loci that implicate immunity, brain development, memory and cognition in predisposition to schizophrenia. Here, in the first of three papers on the genetics of schizophrenia, a genome-wide association study of single nucleotide polymorphisms using data from several large genome-wide scans reveals significant associations to individual loci that implicate perturbations in immunity, brain development, memory and cognition in the predisposition to schizophrenia. Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders1,2,3. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the ‘genomic disorders’, have not yet been characterized4. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.
0
Citation1,632
0
Save
Load More