MP
Michael Powell
Author with expertise in Analysis of Brain Functional Connectivity Networks
University of Missouri, Johns Hopkins University, United States Military Academy
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A Causal Perspective for Batch Effects: when is no answer better than a wrong answer?

Eric Bridgeford et al.Oct 24, 2023
+8
G
M
E
Batch effects, undesirable sources of variability across multiple experiments, present significant challenges for scientific and clinical discoveries. Batch effects can (i) produce spurious signals and/or (ii) obscure genuine signals, contributing to the ongoing reproducibility crisis. Because batch effects are typically modeled as classical We formalize batch effects as causal effects, and introduce algorithms leveraging causal machinery, to address these concerns. Simulations illustrate that when non-causal methods provide the wrong answer, our methods either produce more accurate answers or "no answer", meaning they assert the data are an inadequate to confidently conclude on the presence of a batch effect. Applying our causal methods to a 27 neuroimaging datasets yields qualitatively similar results: in situations where it is unclear whether batch effects are present, non-causal methods confidently identify (or fail to identify) batch effects, whereas our causal methods assert that it is unclear whether there are batch effects or not. This work therefore provides a causal framework for understanding the potential capabilities and limitations of analysis of multi-site data.
0

I TRIED A BUNCH OF THINGS: THE DANGERS OF UNEXPECTED OVERFITTING IN CLASSIFICATION

Michael Powell et al.May 6, 2020
+4
J
M
M
Machine learning is a powerful set of techniques that has enhanced the abilities of neuroscientists to interpret information collected through EEG, fMRI, and MEG data. With these powerful techniques comes the danger of overfitting of hyper-parameters which can render results invalid, and cause a failure to generalize beyond the data set. We refer to this problem as ‘over-hyping’ and show that it is pernicious despite commonly used precautions. In particular, over-hyping occurs when an analysis is run repeatedly with slightly different analysis parameters and one set of results is selected based on the analysis. When this is done, the resulting method is unlikely to generalize to a new dataset, rendering it a partially, or perhaps even completely spurious result that will not be valid outside of the data used in the original analysis. While it is commonly assumed that cross-validation is an effective protection against such spurious results generated through overfitting or overhyping, this is not actually true. In this article, we show that both one-shot and iterative optimization of an analysis are prone to over-hyping, despite the use of cross-validation. We demonstrate that non-generalizable results can be obtained even on non-informative (i.e. random) data by modifying hyper-parameters in seemingly innocuous ways. We recommend a number of techniques for limiting over-hyping, such as lock-boxes, blind analyses, pre-registrations, and nested cross-validation. These techniques, are common in other fields that use machine learning, including computer science and physics. Adopting similar safeguards is critical for ensuring the robustness of machine-learning techniques in the neurosciences.
0

Local Connectome Phenotypes Predict Social, Health, and Cognitive Factors

Michael Powell et al.May 7, 2020
+2
F
J
M
The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample (N=841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions.
5

The Heritability of Human Connectomes: a Causal Modeling Analysis

Jaewon Chung et al.Oct 24, 2023
+3
M
E
J
The heritability of human connectomes is crucial for understanding the influence of genetic and environmental factors on variability in connectomes, and their implications for behavior and disease. However, current methods for studying heritability assume an associational rather than a causal effect, or rely on strong distributional assumptions that may not be appropriate for complex, high-dimensional connectomes. To address these limitations, we propose two solutions: first, we formalize heritability as a problem in causal inference, and identify measured covariates to control for unmeasured confounding, allowing us to make causal claims. Second, we leverage statistical models that capture the underlying structure and dependence within connectomes, enabling us to define different notions of connectome heritability by removing common structures such as scaling of edge weights between connectomes. We then develop a non-parametric test to detect whether causal heritability exists after taking principled steps to adjust for these commonalities, and apply it to diffusion connectomes estimated from the Human Connectome Project. Our findings reveal that heritability can still be detected even after adjusting for potential confounding like neuroanatomy, age, and sex. However, once we address for rescaling between connectomes, our causal tests are no longer significant. These results suggest that previous conclusions on connectome heritability may be driven by rescaling factors. Together, our manuscript highlights the importance for future works to continue to develop data-driven heritability models which faithfully reflect potential confounders and network structure.
14

Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectome

Benjamin Pedigo et al.Oct 24, 2023
+3
E
M
B
Abstract Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of “bilateral symmetry” to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.