AK
Arno Klein
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(45% Open Access)
Cited by:
9,062
h-index:
26
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A reproducible evaluation of ANTs similarity metric performance in brain image registration

Brian Avants et al.Sep 18, 2010
The United States National Institutes of Health (NIH) commit significant support to open-source data and software resources in order to foment reproducibility in the biomedical imaging sciences. Here, we report and evaluate a recent product of this commitment: Advanced Neuroimaging Tools (ANTs), which is approaching its 2.0 release. The ANTs open source software library consists of a suite of state-of-the-art image registration, segmentation and template building tools for quantitative morphometric analysis. In this work, we use ANTs to quantify, for the first time, the impact of similarity metrics on the affine and deformable components of a template-based normalization study. We detail the ANTs implementation of three similarity metrics: squared intensity difference, a new and faster cross-correlation, and voxel-wise mutual information. We then use two-fold cross-validation to compare their performance on openly available, manually labeled, T1-weighted MRI brain image data of 40 subjects (UCLA's LPBA40 dataset). We report evaluation results on cortical and whole brain labels for both the affine and deformable components of the registration. Results indicate that the best ANTs methods are competitive with existing brain extraction results (Jaccard = 0.958) and cortical labeling approaches. Mutual information affine mapping combined with cross-correlation diffeomorphic mapping gave the best cortical labeling results (Jaccard = 0.669 ± 0.022). Furthermore, our two-fold cross-validation allows us to quantify the similarity of templates derived from different subgroups. Our open code, data and evaluation scripts set performance benchmark parameters for this state-of-the-art toolkit. This is the first study to use a consistent transformation framework to provide a reproducible evaluation of the isolated effect of the similarity metric on optimal template construction and brain labeling.
0

Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration

Arno Klein et al.Jan 14, 2009
All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms (“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets. Updates will be published on the http://www.mindboggle.info/papers/ website.
0

101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

Arno Klein et al.Jan 1, 2012
We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The "Desikan-Killiany-Tourville" (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website.
0

Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements

Nick Tustison et al.May 29, 2014
Many studies of the human brain have explored the relationship between cortical thickness and cognition, phenotype, or disease. Due to the subjectivity and time requirements in manual measurement of cortical thickness, scientists have relied on robust software tools for automation which facilitate the testing and refinement of neuroscientific hypotheses. The most widely used tool for cortical thickness studies is the publicly available, surface-based FreeSurfer package. Critical to the adoption of such tools is a demonstration of their reproducibility, validity, and the documentation of specific implementations that are robust across large, diverse imaging datasets. To this end, we have developed the automated, volume-based Advanced Normalization Tools (ANTs) cortical thickness pipeline comprising well-vetted components such as SyGN (multivariate template construction), SyN (image registration), N4 (bias correction), Atropos (n-tissue segmentation), and DiReCT (cortical thickness estimation). In this work, we have conducted the largest evaluation of automated cortical thickness measures in publicly available data, comparing FreeSurfer and ANTs measures computed on 1205 images from four open data sets (IXI, MMRR, NKI, and OASIS), with parcellation based on the recently proposed Desikan–Killiany–Tourville (DKT) cortical labeling protocol. We found good scan–rescan repeatability with both FreeSurfer and ANTs measures. Given that such assessments of precision do not necessarily reflect accuracy or an ability to make statistical inferences, we further tested the neurobiological validity of these approaches by evaluating thickness-based prediction of age and gender. ANTs is shown to have a higher predictive performance than FreeSurfer for both of these measures. In promotion of open science, we make all of our scripts, data, and results publicly available which complements the use of open image data sets and the open source availability of the proposed ANTs cortical thickness pipeline.
1

Mindboggling morphometry of human brains

Arno Klein et al.Feb 23, 2017
Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle's algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available.
1
Citation551
0
Save
1

An open resource for transdiagnostic research in pediatric mental health and learning disorders

Lindsay Alexander et al.Dec 19, 2017
Abstract Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5–21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release ( n =664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).
0

Evaluation of volume-based and surface-based brain image registration methods

Arno Klein et al.Feb 2, 2010
Establishing correspondences across brains for the purposes of comparison and group analysis is almost universally done by registering images to one another either directly or via a template. However, there are many registration algorithms to choose from. A recent evaluation of fully automated nonlinear deformation methods applied to brain image registration was restricted to volume-based methods. The present study is the first that directly compares some of the most accurate of these volume registration methods with surface registration methods, as well as the first study to compare registrations of whole-head and brain-only (de-skulled) images. We used permutation tests to compare the overlap or Hausdorff distance performance for more than 16,000 registrations between 80 manually labeled brain images. We compared every combination of volume-based and surface-based labels, registration, and evaluation. Our primary findings are the following: 1. de-skulling aids volume registration methods; 2. custom-made optimal average templates improve registration over direct pairwise registration; and 3. resampling volume labels on surfaces or converting surface labels to volumes introduces distortions that preclude a fair comparison between the highest ranking volume and surface registration methods using present resampling methods. From the results of this study, we recommend constructing a custom template from a limited sample drawn from the same or a similar representative population, using the same algorithm used for registering brains to the template.
11

Patterns of Ongoing Thought in the Real-World

B. Mulholland et al.Oct 7, 2022
Abstract Previous research has indicated that health and well-being are impacted on by both the way we think, and the things we do. In the laboratory, studies suggest that specific task contexts affect this process because the people we are with, the places we are in, and the activities we perform may influence our thought patterns. In our study participants completed multi-dimensional experience-sampling surveys eight times per day for 5 days to generate thought data across a variety of dimensions in daily life. Principal component analysis was used to decompose the experience sampling data, and linear mixed modelling related these patterns to the activity in daily life in which they emerged. Our study replicated the influence of socializing on patterns of ongoing thought observed in our prior study and established that this is part of a broader set of relationship that links our current activities to how our thoughts are organised in daily life. We also found that factors such as time of day and the physical location are associated with reported patterns of thought, factors that are important for future studies to explore. Our study suggests that sampling thinking in the real world may be able to provide a set of comprehensive thinking-activity mappings that will be useful to researchers and health care professionals interested in health and well-being.
0

Evaluating fMRI-Based Estimation of Eye Gaze during Naturalistic Viewing

Jake Son et al.Jun 18, 2018
ABSTRACT The collection of eye gaze information during functional magnetic resonance imaging (fMRI) is important for monitoring variations in attention and task compliance, particularly for naturalistic viewing paradigms (e.g., movies). However, the complexity and setup requirements of current in-scanner eye-tracking solutions can preclude many researchers from accessing such information. Predictive eye estimation regression (PEER) is a previously developed support vector regression-based method for retrospectively estimating eye gaze from the fMRI signal in the eye’s orbit using a 1.5-minute calibration scan. Here, we provide confirmatory validation of the PEER method’s ability to infer eye gaze on a TR-by-TR basis during movie viewing, using simultaneously acquired eye tracking data in five individuals (median angular deviation < 2°). Then, we examine variations in the predictive validity of PEER models across individuals in a subset of data (n=448) from the Child Mind Institute Healthy Brain Network Biobank, identifying head motion as a primary determinant. Finally, we accurately classify which of two movies is being watched based on the predicted eye gaze patterns (area under the curve = .90 ± .02) and map the neural correlates of eye movements derived from PEER. PEER is a freely available and easy-to-use tool for determining eye fixations during naturalistic viewing.
0

Remote Digital Psychiatry: MindLogger for Mobile Mental Health Assessment and Therapy

Arno Klein et al.Nov 17, 2020
Abstract Background Universal access to assessment and treatment of mental health and learning disorders remains a significant and unmet need. There is a vast number of people without access to care because of economic, geographic, and cultural barriers as well as limited availability of clinical experts who could help advance our understanding of mental health. Objective To create an open, configurable software platform to build clinical measures, mobile assessments, tasks, and interventions without programming expertise. Specifically, our primary requirements include: an administrator interface for creating and scheduling recurring and customized questionnaires where end users receive and respond to scheduled notifications via an iOS or Android app on a mobile device. Such a platform would help relieve overwhelmed health systems, and empower remote and disadvantaged subgroups in need of accurate and effective information, assessment, and care. This platform has potential to advance scientific research by supporting the collection of data with instruments tailored to specific scientific questions from large, distributed, and diverse populations. Methods We conducted a search for tools that satisfy the above requirements. We designed and developed a new software platform called “MindLogger” that exceeds the above requirements. To demonstrate the tool’s configurability, we built multiple “applets” (collections of activities) within the MindLogger mobile application and deployed several, including a comprehensive set of assessments underway in a large-scale, longitudinal, mental health study. Results Of the hundreds of products we researched, we found 10 that met our primary requirements above with 4 that support end-to-end encryption, 2 that enable restricted access to individual users’ data, 1 that provides open source software, and none that satisfy all three. We compared features related to information presentation and data capture capabilities, privacy and security, and access to the product, code, and data. We successfully built MindLogger mobile and web applications, as well as web browser-based tools for building and editing new applets and for administering them to end users. MindLogger has end-to-end encryption, enables restricted access, is open source, and supports a variety of data collection features. One applet is currently collecting data from children and adolescents in our mental health study, and other applets are in different stages of testing and deployment for use in clinical and research settings. Conclusions We have demonstrated the flexibility and applicability of the MindLogger platform through its deployment in a large-scale, longitudinal, mobile mental health study, and by building a variety of other mental health-related applets. With this release, we encourage a broad range of users to apply the MindLogger platform to create and test applets to advance health care and scientific research. We hope that increasing availability of applets designed to assess and administer interventions will facilitate access to health care in the general population.
0
Paper
Citation1
0
Save
Load More