JM
Judith Mizrachi
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
447
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
113

Cellular Anatomy of the Mouse Primary Motor Cortex

Rodrigo Muñoz-Castañeda et al.Oct 2, 2020
+86
Y
Y
R
Abstract An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.
113
Citation30
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 21, 2020
+254
Y
M
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
1

High-throughput confocal airy beam oblique light-sheet tomography of brain-wide imaging at single-cell resolution

Xiaoli Qi et al.Jun 6, 2023
+11
L
A
X
Abstract Brain research is an area of research characterized by its cutting-edge nature, with brain mapping constituting a crucial aspect of this field. As sequencing tools have played a crucial role in gene sequencing, brain mapping largely depends on automated, high-throughput and high-resolution imaging techniques. Over the years, the demand for high-throughput imaging has scaled exponentially with the rapid development of microscopic brain mapping. In this paper, we introduce the novel concept of confocal Airy beam into oblique light-sheet tomography named CAB-OLST. We demonstrate that this technique enables the high throughput of brain-wide imaging of long-distance axon projection for the entire mouse brain at a resolution of 0.26 μm × 0.26 μm × 1.06 μm in 58 hours. This technique represents an innovative contribution to the field of brain research by setting a new standard for high-throughput imaging techniques.
0

Oblique light-sheet tomography: fast and high resolution volumetric imaging of mouse brains

Arun Narasimhan et al.Apr 30, 2017
+2
J
K
A
Present light sheet fluorescence microscopes lack the wherewithal to image the whole brain (large tissues) with uniform illumination/detection parameters and high enough resolution to provide an understanding of the various aspects of neuroanatomy. To overcome this, we developed an oblique version of the light sheet microscope (Oblique Light Sheet Tomography, OLST) that includes a high magnification objective and serial sectioning, for volumetric imaging of the whole mouse brain at high spatial resolution at constant illumination/detection. We developed a novel gelatin based re-embedding procedure that makes the cleared brain rigid so that it can sectioned using our integrated microtome. Here, we characterize OLST and show that it can be used to observe dendritic morphology, spines and follow axons over a few mm in the mouse brain.