EO
Edwin Oh
Author with expertise in Genomic Studies and Association Analyses
University of Nevada, Las Vegas, Center for Interdisciplinary Studies, University of Nevada Reno
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
1
h-index:
34
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Retrospective varying coefficient association analysis of longitudinal binary traits: application to the identification of genetic loci associated with hypertension

Gang Xu et al.Oct 24, 2023
+4
W
A
G
Abstract Many genetic studies contain rich information on longitudinal phenotypes that require powerful analytical tools for optimal analysis. Genetic analysis of longitudinal data that incorporates temporal variation is important for understanding the genetic architecture and biological variation of complex diseases. Most of the existing methods assume that the contribution of genetic variants is constant over time and fail to capture the dynamic pattern of disease progression. However, the relative influence of genetic variants on complex traits fluctuates over time. In this study, we propose a retrospective varying coefficient mixed model association test, RVMMAT, to detect time-varying genetic effect on longitudinal binary traits. We model dynamic genetic effect using smoothing splines, estimate model parameters by maximizing a double penalized quasi-likelihood function, design a joint test using a Cauchy combination method, and evaluate statistical significance via a retrospective approach to achieve robustness to model misspecification. Through simulations, we illustrated that the retrospective varying-coefficient test was robust to model misspecification under different ascertainment schemes and gained power over the association methods assuming constant genetic effect. We applied RVMMAT to a genome-wide association analysis of longitudinal measure of hypertension in the Multi-Ethnic Study of Atherosclerosis. Pathway analysis identified two important pathways related to G-protein signaling and DNA damage. Our results demonstrated that RVMMAT could detect biologically relevant loci and pathways in a genome scan and provided insight into the genetic architecture of hypertension.
0

Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights

Alexander Gusev et al.May 6, 2020
+13
H
N
A
Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating expression data from brain, blood, and adipose tissues across 3,693 individuals with schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium. We identified 157 genes with a transcriptome-wide significant association, of which 35 did not overlap a known GWAS locus; the largest number involved alternative splicing in brain. 42/157 genes were also associated to specific chromatin phenotypes measured in 121 independent samples (a 4-fold enrichment over background genes). This high-throughput connection of GWAS findings to specific genes, tissues, and regulatory mechanisms is an essential step toward understanding the biology of schizophrenia and moving towards therapeutic interventions.
0

Science Education for the Youth (SEFTY): A Neuroscience Outreach Program for High School Students in Southern Nevada During the COVID-19 Pandemic

Nabih Ghani et al.May 27, 2024
+8
A
H
N
Laboratory outreach programs for K-12 students in the United States from 2020-2022 were suspended or delayed due to COVID-19 restrictions. While Southern Nevada also observed similar closures for onsite programs, we and others hypothesized that in-person laboratory activities could be prioritized after increasing vaccine doses were available to the public and masking was encouraged. Here, we describe how the Laboratory of Neurogenetics and Precision Medicine at the University of Nevada Las Vegas (UNLV) collaborated with administrators from a local school district to conduct training activities for high school students during the COVID-19 pandemic. The Science Education for the Youth (SEFTY) program's curriculum was constructed to incorporate experiential learning, fostering collaboration and peer-to-peer knowledge exchange. Leveraging neuroscience tools from our UNLV laboratory, we engaged with 117 high school applicants from 2021-2022. Our recruitment efforts yielded a diverse cohort, with >41% Pacific Islander and Asian students, >9% African American students, and >12% multiracial students. We assessed the impact of the SEFTY program through pre- and post-assessment student evaluations, revealing a significant improvement of 20.3% in science proficiency ( p <0.001) after participating in the program. Collectively, our laboratory curriculum offers valuable insights into the capacity of an outreach program to actively foster diversity and cultivate opportunities for academic excellence, even in the challenging context of a global pandemic.The Science Education for the Youth (SEFTY) program at UNLV successfully engaged 117 diverse high school students in neuroscience-based experiential learning, demonstrating the viability of in-person education during a pandemic. Significant improvements in science proficiency (20.3% increase) underscore the program's effectiveness in fostering academic excellence and diversity. This initiative potentially serves as a model for maintaining high-quality, inclusive science education in challenging times.
0

Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia

Menachem Fromer et al.May 6, 2020
+54
S
P
M
Over 100 genetic loci harbor schizophrenia associated variants, yet how these common variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating the largest publicly available resource to date of gene expression and its genetic regulation; ~5 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the schizophrenia risk loci have common variants that could explain regulation of brain gene expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential expression between cases and controls, 44% show some evidence for differential expression. All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly polygenic, as has been reported in investigations of common and rare genetic variation. Co-expression analyses identify a gene module that shows enrichment for genetic associations and is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic interpretations of genetic liability for schizophrenia and other brain diseases.
1

Detection of interactions between genetic marker sets and environment in a genome-wide study of hypertension

Linchuan Shen et al.Oct 24, 2023
+4
B
A
L
As human complex diseases are influenced by the interplay of genes and environment, detecting gene-environment interactions (G×E) can shed light on biological mechanisms of diseases and play an important role in disease risk prediction. Development of powerful quantitative tools to incorporate G×E in complex diseases has potential to facilitate the accurate curation and analysis of large genetic epidemiological studies. However, most of existing methods that interrogate G×E focus on the interaction effects of an environmental factor and genetic variants, exclusively for common or rare variants. In this study, we proposed two tests, MAGEIT_RAN and MAGEIT_FIX, to detect interaction effects of an environmental factor and a set of genetic markers containing both rare and common variants, based on the MinQue for Summary statistics. The genetic main effects in MAGEIT_RAN and MAGEIT_FIX are modeled as random or fixed, respectively. Through simulation studies, we illustrated that both tests had type I error under control and MAGEIT_RAN was overall the most powerful test. We applied MAGEIT to a genome-wide analysis of gene-alcohol interactions on hypertension in the Multi-Ethnic Study of Atherosclerosis. We detected two genes, CCNDBP1 and EPB42, that interact with alcohol usage to influence blood pressure. Pathway analysis identified sixteen significant pathways related to signal transduction and development that were associated with hypertension, and several of them were reported to have an interactive effect with alcohol intake. Our results demonstrated that MAGEIT can detect biologically relevant genes that interact with environmental factors to influence complex traits.
1

Detecting time-varying genetic effects in Alzheimer's disease using a longitudinal GWAS model

Xiaowei Zhuang et al.Oct 24, 2023
+3
A
G
X
Abstract Background The development and progression of Alzheimer’s disease (AD) is a complex process that can change over time, during which genetic influences on phenotypes may also fluctuate. Incorporating longitudinal phenotypes in genome wide association studies (GWAS) could help unmask genetic loci with time-varying effects. In this study, we incorporated a varying coefficient test in a longitudinal GWAS model to identify single nucleotide polymorphisms (SNPs) that may have time- or age-dependent effects in AD. Methods Genotype data from 1,877 participants in the Alzheimer’s Neuroimaging Data Initiative (ADNI) were imputed using the Haplotype Reference Consortium (HRC) panel, resulting in 9,573,130 SNPs. Subjects’ longitudinal impairment status at each visit was considered as a binary and clinical phenotype. Participants’ composite standardized uptake value ratio (SUVR) derived from each longitudinal amyloid PET scan was considered as a continuous and biological phenotype. The retrospective varying coefficient mixed model association test (RVMMAT) was used in longitudinal GWAS to detect time-varying genetic effects on the impairment status and SUVR measures. Post-hoc analyses were performed on genome-wide significant SNPs, including 1) pathway analyses; 2) age-stratified genotypic comparisons and regression analyses; and 3) replication analyses using data from the National Alzheimer’s Coordinating Center (NACC). Results Our model identified 244 genome-wide significant SNPs that revealed time-varying genetic effects on the clinical impairment status in AD; among which, 12 SNPs on chromosome 19 were successfully replicated using data from NACC. Post-hoc age-stratified analyses indicated that for most of these 244 SNPs, the maximum genotypic effect on impairment status occurred between 70 to 80 years old, and then declined with age. Our model further identified 73 genome-wide significant SNPs associated with the temporal variation of amyloid accumulation. For these SNPs, an increasing genotypic effect on PET-SUVR was observed as participants’ age increased. Functional pathway analyses on significant SNPs for both phenotypes highlighted the involvement and disruption of immune responses- and neuroinflammation-related pathways in AD. Conclusion We demonstrate that longitudinal GWAS models with time-varying coefficients can boost the statistical power in AD-GWAS. In addition, our analyses uncovered potential time-varying genetic variants on repeated measurements of clinical and biological phenotypes in AD.