EB
Erik Bao
Author with expertise in Acute Myeloid Leukemia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
507
h-index:
16
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inherited causes of clonal haematopoiesis in 97,691 whole genomes

Alexander Bick et al.Oct 14, 2020
+109
E
N
A
Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2–4 and coronary heart disease5—this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues. Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.
0
Citation472
0
Save
0

Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Alexander Bick et al.Sep 27, 2019
+123
S
J
A
ABSTRACT Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence 2–4 and coronary heart disease prevalence. 5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2 , a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.
0
Citation22
0
Save
0

Genetic Analyses of Blood Cell Structure for Biological and Pharmacological Inference

Parsa Akbari et al.Jan 31, 2020
+32
D
J
P
SUMMARY Thousands of genetic associations with phenotypes of blood cells are known, but few are with phenotypes relevant to cell function. We performed GWAS of 63 flow-cytometry phenotypes, including measures of cell granularity, nucleic acid content, and reactivity, in 39,656 participants in the INTERVAL study, identifying 2,172 variant-trait associations. These include associations mediated by functional cellular structures such as secretory granules, implicated in vascular, thrombotic, inflammatory and neoplastic diseases. By integrating our results with epigenetic data and with signals from molecular abundance/disease GWAS, we infer the hematopoietic origins of population phenotypic variation and identify the transcription factor FOG2 as a regulator of platelet α -granularity. We show how flow cytometry genetics can suggest cell types mediating complex disease risk and suggest efficacious drug targets, presenting Daclizumab/Vedolizumab in autoimmune disease as positive controls. Finally, we add to existing evidence supporting IL7/IL7-R as drug targets for multiple sclerosis.
0
Citation6
0
Save
43

Shared and distinct genetic etiologies for different types of clonal hematopoiesis

Derek Brown et al.Mar 14, 2022
+12
Y
L
D
Abstract Clonal hematopoiesis (CH) – age-related expansion of mutated hematopoietic clones – can differ in frequency and cellular fitness. Descriptive studies have identified a spectrum of events (coding mutations in driver genes (CHIP), gains/losses and copy-neutral loss of chromosomal segments (mCAs), and loss of sex chromosomes). Co-existence of different CH events raises key questions as to their origin, selection, and impact. Here, we report analyses of sequence and genotype array data in up to 482,378 individuals from UK Biobank, demonstrating shared genetic architecture across different types of CH. These data highlighted evidence for a cellular evolutionary trade-off between different forms of CH, with LOY occurring at lower rates in individuals carrying mutations in established CHIP genes. Furthermore, we observed co-occurrence of CHIP and mCAs with overlap at TET2, DNMT3A , and JAK2 , in which CHIP precedes mCA acquisition. Individuals carrying these overlapping somatic mutations had a large increase in risk of future hematological malignancy (HR=17.31, 95% CI=9.80-30.58, P=8.94×10 −23 ), which is significantly elevated compared to individuals with non-overlapping CHIP and autosomal mCAs (P heterogeneity =8.83×10 −3 ). Finally, we leverage the shared genetic architecture of these CH traits to identify 15 novel loci associated with blood cancer risk.
43
Citation4
0
Save
11

From GWAS Variant to Function: a Study of ~148,000 Variants for Blood Cell Traits

Quan Sun et al.Feb 16, 2021
+9
J
V
Q
Abstract Genome-wide association studies (GWAS) have identified hundreds of thousands of genetic variants associated with complex diseases and traits. However, most variants are noncoding and not clearly linked to genes, making it challenging to interpret these GWAS signals. We present a systematic variant-to-function study, prioritizing the most likely functional elements of the genome for experimental follow-up, for >148,000 variants identified for hematological traits. Specifically, we developed VAMPIRE: Variant Annotation Method Pointing to Interesting Regulatory Effects, an interactive web application implemented in R Shiny ( http://shiny.bios.unc.edu/vampire/ ). This tool efficiently integrates and displays information from multiple complementary sources, including epigenomic signatures from blood cell relevant tissues or cells, functional and conservation summary scores, variant impact on protein and gene expression, chromatin conformation information, as well as publicly available GWAS and phenome-wide association study (PheWAS) results. Leveraging data generated from independently performed functional validation experiments, we demonstrate that our prioritized variants, genes, or variant-gene links are significantly more likely to be experimentally validated. This study not only has important implications for systematic and efficient revelation of functional mechanisms underlying GWAS variants for hematological traits, but also provides a prototype that can be adapted to many other complex traits, paving the path for efficient variant to function (V2F) analyses.
11
Citation3
0
Save
0

Genetic predisposition to myeloproliferative neoplasms implicates hematopoietic stem cell biology

Erik Bao et al.Oct 8, 2019
+30
X
S
E
Myeloproliferative neoplasms (MPNs) are blood cancers characterized by excessive production of mature myeloid cells that result from the acquisition of somatic driver mutations in hematopoietic stem cells (HSCs). While substantial progress has been made to define the causal somatic mutation profile for MPNs, epidemiologic studies indicate a significant heritable component for the disease that is among the highest known for all cancers. However, only a limited set of genetic risk loci have been identified, and the underlying biological mechanisms leading to MPN acquisition remain unexplained. Here, to define the inherited risk profile, we conducted the largest genome-wide association study of MPNs to date (978,913 individuals with 3,224 cases) and identified 14 genome-wide significant loci, as well as a polygenic signature that increases the odds for disease acquisition by nearly 3-fold between the top and median deciles. Interestingly, we find a shared genetic architecture between MPN risk and several hematopoietic traits spanning distinct lineages, as well as an association between increased MPN risk and longer leukocyte telomere length, collectively implicating HSC function and self-renewal. Strikingly, we find a significant enrichment for risk variants mapping to accessible chromatin in HSCs compared with other hematopoietic populations. Finally, gene mapping identifies modulators of HSC biology and targeted variant-to-function analyses suggest likely roles for CHEK2 and GFI1B in altering HSC function to confer disease risk. Overall, we demonstrate the power of human genetic studies to illuminate a previously unappreciated mechanism for MPN risk through modulation of HSC function.
0

Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations

Ming-Huei Chen et al.Jan 18, 2020
+111
M
V
M
Most loci identified by GWAS have been found in populations of European ancestry (EA). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EA individuals, we identified 5,552 trait-variant associations at P<5x10-9, including 71 novel loci not found in EA populations. We also identified novel ancestry-specific variants not found in EA, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional, and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EA-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations, and compared genetic architecture and the impact of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.
1

Genome-wide association study on 13,167 individuals identifies regulators of hematopoietic stem and progenitor cell levels in human blood

Aitzkoa Portilla et al.Apr 1, 2021
+19
C
L
A
ABSTRACT Understanding how hematopoietic stem and progenitor cells (HSPCs) are regulated is of central importance for the development of new therapies for blood disorders and stem cell transplantation. To date, HSPC regulation has been extensively studied in vitro and in animal models, but less is known about the mechanisms in vivo in humans. Here, in a genome-wide association study on 13,167 individuals, we identify 9 significant and 2 suggestive DNA sequence variants that influence HSPC (CD34 + ) levels in human blood. The identified loci associate with blood disorders, harbor known and novel HSPC genes, and affect gene expression in HSPCs. Interestingly, our strongest association maps to the PPM1H gene, encoding an evolutionarily conserved serine/threonine phosphatase never previously implicated in stem cell biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34 + cell levels downregulates PPM1H . By functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, rs772557-A selectively increases HSPC subpopulations in which the MYB site is active, and PPM1H shRNA- knockdown increased CD34 + and CD34 + 90 + cell proportions in umbilical cord blood cultures. Our findings represent the first large-scale association study on a stem cell trait, illuminating HSPC regulation in vivo in humans, and identifying PPM1H as a novel inhibition target that can potentially be utilized clinically to facilitate stem cell harvesting for transplantation.
0

Interrogation of human hematopoiesis at single-cell and single-variant resolution

Caleb Lareau et al.Jan 28, 2018
+10
E
J
C
Incomplete annotation of cell-to-cell state variance and widespread linkage disequilibrium in the human genome represent significant challenges to elucidating mechanisms of trait-associated genetic variation. Here, using data from the UK Biobank, we perform genetic fine-mapping for 16 blood cell traits to quantify posterior probabilities of association while allowing for multiple independent signals per region. We observe an enrichment of fine-mapped variants in accessible chromatin of lineage-committed hematopoietic progenitor cells. Further, we develop a novel analytic framework that identifies "core gene" cell type enrichments and show that this approach uniquely resolves relevant cell types within closely related populations. Applying our approach to single cell chromatin accessibility data, we discover significant heterogeneity within classically defined multipotential progenitor populations. Finally, using several lines of empirical evidence, we identify relevant cell types, predict target genes, and propose putative causal mechanisms for fine-mapped variants. In total, our study provides an analytic framework for single-variant and single-cell analyses to elucidate putative causal variants and cell types from GWAS and high-resolution epigenomic assays.