KN
Kirill Nourski
Author with expertise in Neuronal Oscillations in Cortical Networks
University of Iowa, Iowa City Public Library, University of Iowa Hospitals and Clinics
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
30
h-index:
30
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Common Fronto-temporal Effective Connectivity in Humans and Monkeys

Francesca Rocchi et al.May 7, 2020
+15
F
H
F
ABSTRACT Cognitive pathways supporting human language and declarative memory are thought to have uniquely evolutionarily differentiated in our species. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed a new approach using functional imaging to visualize the impact of direct electrical brain stimulation in human neurosurgery patients. Applying the same approach with macaque monkeys, we found remarkably comparable patterns of effective connectivity between auditory cortex and ventro-lateral prefrontal cortex (vlPFC) and parahippocampal cortex in both species. Moreover, in humans electrical tractography revealed rapid evoked potentials in vlPFC from stimulating auditory cortex and speech sounds drove vlPFC, consistent with prior evidence in monkeys of direct projections from auditory cortex to vocalization responsive regions in vlPFC. The results identify a common effective connectivity signature that from auditory cortex is equally direct to vlPFC and indirect to the hippocampus (via parahippocampal cortex) in human and nonhuman primates. Highlights Privileged human auditory to inferior frontal connectivity, linked to monkeys Common auditory to parahippocampal effective connectivity in both species Greater lateralization in human effective connectivity, more symmetrical in monkeys Human fronto-temporal network function rooted in evolutionarily conserved signature eTOC short summary Functional connectivity between regions crucial for language and declarative memory is thought to have substantially differentiated in humans. Using a new technique to similarly visualize directional effective connectivity in humans and monkeys, we found remarkably comparable connectivity patterns in both species between fronto-temporal regions crucial for cognition.
0
Citation20
0
Save
45

Learning nonnative speech sounds changes local encoding in the adult human cortex

Han‐Gyol Yi et al.Sep 4, 2021
+5
K
B
H
Adults can learn to identify nonnative speech sounds with training, albeit with substantial variability in learning behavior. Increases in behavioral accuracy are associated with increased separability for sound representations in cortical speech areas. However, it remains unclear whether individual auditory neural populations all show the same types of changes with learning, or whether there are heterogeneous encoding patterns. Here, we used high-resolution direct neural recordings to examine local population response patterns, while native English listeners learned to recognize unfamiliar vocal pitch patterns in Mandarin Chinese tones. We found a distributed set of neural populations in bilateral superior temporal gyrus and ventrolateral frontal cortex, where the encoding of Mandarin tones changed throughout training as a function of trial-by-trial accuracy ("learning effect"), including both increases and decreases in the separability of tones. These populations were distinct from populations that showed changes as a function of exposure to the stimuli regardless of trial-by-trial accuracy. These learning effects were driven in part by more variable neural responses to repeated presentations of acoustically identical stimuli. Finally, learning effects could be predicted from speech-evoked activity even before training, suggesting that intrinsic properties of these populations make them amenable to behavior-related changes. Together, these results demonstrate that nonnative speech sound learning involves a wide array of changes in neural representations across a distributed set of brain regions.
0

Oscillatory correlates of auditory working memory examined with human electrocorticography

Sukhbinder Kumar et al.Jun 5, 2024
+6
J
P
S
Abstract This work examines how sounds are held in auditory working memory (AWM) in humans by examining oscillatory local field potentials (LFPs) in candidate brain regions. Previous fMRI studies by our group demonstrated blood oxygenation level-dependent (BOLD) response increases during maintenance in auditory cortex, inferior frontal cortex and the hippocampus using a paradigm with a delay period greater than 10s. The relationship between such BOLD changes and ensemble activity in different frequency bands is complex, and the long delay period raised the possibility that long-term memory mechanisms were engaged. Here we assessed LFPs in different frequency bands in six subjects with recordings from all candidate brain regions using a paradigm with a short delay period of 3 s. Sustained delay activity was demonstrated in all areas, with different patterns in the different areas. Enhancement in low frequency (delta) power and suppression across higher frequencies (beta/gamma) were demonstrated in primary auditory cortex in medial Heschl’s gyrus (HG) whilst non-primary cortex showed patterns of enhancement and suppression that altered at different levels of the auditory hierarchy from lateral HG to superior- and middle-temporal gyrus. Inferior frontal cortex showed increasing suppression with increasing frequency. The hippocampus and parahippocampal gyrus showed low frequency increases and high frequency decreases in oscillatory activity. The work demonstrates sustained activity patterns that can only be explained by AWM maintenance, with prominent low-frequency increases in medial temporal lobe regions.
16

Differential causal involvement of human auditory and frontal cortices in vocal motor control

Araceli Cardenas et al.Oct 24, 2023
+8
Z
R
A
Speech motor control requires integration of sensory and motor information. Bidirectional communication between frontal and auditory cortices is crucial for speech production, self-monitoring and motor control. We used cortical direct electrical stimulation (DES) to functionally dissect audio-motor interactions underlying speech production and motor control. Eleven neurosurgical patients performed a visually cued vocal task in which a short auditory feedback perturbation was introduced during vocalization. We evaluated the effect of DES on vocal initiation, voice fundamental frequency (F0) and feedback-dependent motor control. DES of frontal sites modulated vocal onset latencies. Stimulation of different inferior frontal gyrus sites elicited either shortening or prolongation of vocal latencies. DES distinctly modulated voice F0 at different vocalization stages. Frontal and temporal areas played an important role in setting voice F0 in the first 250 ms of an utterance, while Heschls gyrus was involved later when auditory input is available for self-monitoring. Vocal responses to pitch-shifted auditory feedback were mostly reduced by DES of non-core auditory cortices. Overall, we demonstrate that vocal planning and initiation are driven by frontal cortices, while feedback-dependent control relies predominantly on non-core auditory cortices. Our findings represent direct evidence of the role played by different auditory and frontal regions in vocal motor control.
1

Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology

Matthew Banks et al.Oct 24, 2023
+7
D
B
M
Abstract Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At fine scale, a group of auditory cortical regions excluded several higher order auditory areas and segregated maximally from prefrontal cortex. On mesoscale, the proximity of limbic structures to auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macro scale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders. Blurb We describe the organization of human neocortex on multiple spatial scalesbased on resting state intracranial electrophysiology. We focus on cortical regions involved in auditory processing and examine inter-regional hierarchical relationships, network topology, and hemispheric lateralization. This work introduces a powerful analytical tool to examine mechanisms of altered arousal states, brain development, and neuropsychiatric disorders.
1

Consciousness is indexed by analogous cortical reorganization during sleep and anesthesia

Bryan Krause et al.Oct 24, 2023
+4
C
D
B
Abstract Although sleep and anesthesia are predicted to share common neural signatures of transitions into and out of unconsciousness, supportive evidence has been elusive. We identified these signatures using intracranial electroencephalography in neurosurgical patients. We applied diffusion map embedding to map cortical location into a space where proximity indicates functional similarity using a normalized connectivity (‘diffusion’) matrix, itself a rich source of information about network properties. During reduced consciousness, diffusion matrices exhibited decreased effective dimensionality, reflecting reduced network entropy. Furthermore, functional brain regions exhibited tighter clustering in embedding space with greater distances between regions, corresponding to decreased differentiation and functional integration. These changes were not region-specific, suggesting global network reorganization. These results strongly suggest common neural substrates for loss and recovery of consciousness during anesthesia and sleep, providing a systems-level mechanistic understanding within an intuitive geometric context and laying the foundation for evaluation of cortical state transitions in clinical settings.
3

Improved high-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors

Alliot Nagle et al.Oct 24, 2023
+5
B
J
A
Abstract Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR models for study of brain behavior over hundreds of recording sites has been very limited. Prior work has focused on different strategies for selecting a subset of important MVAR coefficients in the model and is motivated by the potential of MVAR models and the data requirements of conventional least-squares estimation algorithms. Here we propose incorporating prior information, such as fMRI, into MVAR model estimation using a weighted group LASSO regularization strategy. The proposed approach is shown to reduce data requirements by a factor of two relative to the recently proposed group LASSO method of Endemann et al. (2022) while resulting in models that are both more parsimonious and have higher fidelity to the ground truth. The effectiveness of the method is demonstrated using simulation studies of physiologically realistic MVAR models derived from iEEG data. The robustness of the approach to deviations between the conditions under which the prior information and iEEG data is obtained is illustrated using models from data collected in different sleep stages. This approach will allow accurate effective connectivity analyses over short time scales, facilitating investigations of causal interactions in the brain underlying perception and cognition during rapid transitions in behavioral state.
0

A sound-sensitive source of alpha oscillations in human non-primary auditory cortex

Alexander Billig et al.May 7, 2020
+7
A
B
A
The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl’s gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (four female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.Significance Statement To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl’s gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.
0

Cortical functional connectivity indexes arousal state during sleep and anesthesia

Matthew Banks et al.May 7, 2020
+5
C
B
M
Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is unclear. Both sleep and anesthesia comprise states of varying levels of arousal and consciousness, including states of largely maintained consciousness (sleep: N1, REM; anesthesia: sedated but responsive) as well as states of substantially reduced consciousness (sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical connectivity will reflect clear changes when transitioning into states of reduced consciousness, and (2) these changes are similar for arousal states of comparable levels of consciousness during sleep and anesthesia. Using intracranial recordings from five neurosurgical patients, we compared resting state cortical functional connectivity (as measured by weighted phase lag index) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S) and unresponsive (U)]. In wake states WS and WA, alpha-band connectivity within and between temporal, parietal and occipital regions was dominant. This pattern was largely unchanged in N1, REM and S. Transitions into states of reduced consciousness N2, N3 and U were characterized by dramatic and strikingly similar changes in connectivity, with dominant connections shifting to frontal cortex. We suggest that shifts from temporo-parieto-occipital to frontal cortical connectivity may reflect impaired sensory processing in states of reduced consciousness. The data indicate that functional connectivity can serve as a biomarker of arousal state and suggest common mechanisms of LOC in sleep and anesthesia.
1

Multivariate autoregressive model estimation for high dimensional intracranial electrophysiological data

Christopher Endemann et al.Oct 24, 2023
+2
K
B
C
Abstract Fundamental to elucidating the functional organization of the brain is the assessment of causal interactions between different brain regions. Multivariate autoregressive (MVAR) modeling techniques applied to multisite electrophysiological recordings are a promising avenue for identifying such causal links. They estimate the degree to which past activity in one or more brain regions is predictive of another region’s present activity, while simultaneously accounting for the mediating effects of other regions. Including in the model as many mediating variables as possible has the benefit of drastically reducing the odds of detecting spurious causal connectivity. However, effective bounds on the number of MVAR model coefficients that can be estimated reliably from limited data make exploiting the potential of MVAR models challenging. Here, we utilize well-established dimensionality-reduction techniques to fit MVAR models to human intracranial data from ∽100 – 200 recording sites spanning dozens of anatomically and functionally distinct cortical regions. First, we show that high dimensional MVAR models can be successfully estimated from long segments of data and yield plausible connectivity profiles. Next, we use these models to generate synthetic data with known ground-truth connectivity to explore the utility of applying principal component analysis and group least absolute shrinkage and selection operator (LASSO) to reduce the number of parameters (connections) during model fitting to shorter data segments. We show that group LASSO is highly effective for recovering ground truth connectivity in the limited data regime, capturing important features of connectivity for high-dimensional models with as little as 10 s of data. The methods presented here have broad applicability to the analysis of high-dimensional time series data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, and arousal.
Load More